"\\iint" y/x^2+1da where d = (x,y) 0<x<4 and 0<y< X
"\u222c \\frac{y}{x^2+1}da \n\\\\=\u222c \\frac{y}{x^2+1} dydx\n\\\\=\\int_{0}^{4}(\\int_{0}^{x}\\frac{y}{x^2+1}dy)dx\n\\\\=\\int_{0}^{4} \\frac{1}{2}(\\frac{y^2}{x^2+1})^{x}_{0}dx\n\\\\=\\frac{1}{2}\\int_{0}^{4} \\frac{x^2}{x^2+1}dx\n\\\\=\\frac{1}{2}\\int_{0}^{4} \\frac{x^2+1-1}{x^2+1}dx\n\\\\=\\frac{1}{2}[\\int_{0}^{4} (1-\\frac{1}{x^2+1})]dx\n\\\\=\\frac{1}{2}[\\int_{0}^{4} (dx-\\frac{1}{x^2+1}dx)]\n\\\\=\\frac{1}{2}[ x-tan^{-1}x]_{0}^{4}\n\\\\=\\frac{1}{2}[ 4-tan^{-1}4-0]\n\\\\=2-\\frac{1}{2}tan^{-1}4"
Comments
Leave a comment