Question #255372

\iint y/x^2+1da where d = (x,y) 0<x<4 and 0<y< X


1
Expert's answer
2021-11-01T11:43:10-0400

yx2+1da=yx2+1dydx=04(0xyx2+1dy)dx=0412(y2x2+1)0xdx=1204x2x2+1dx=1204x2+11x2+1dx=12[04(11x2+1)]dx=12[04(dx1x2+1dx)]=12[xtan1x]04=12[4tan140]=212tan14∬ \frac{y}{x^2+1}da \\=∬ \frac{y}{x^2+1} dydx \\=\int_{0}^{4}(\int_{0}^{x}\frac{y}{x^2+1}dy)dx \\=\int_{0}^{4} \frac{1}{2}(\frac{y^2}{x^2+1})^{x}_{0}dx \\=\frac{1}{2}\int_{0}^{4} \frac{x^2}{x^2+1}dx \\=\frac{1}{2}\int_{0}^{4} \frac{x^2+1-1}{x^2+1}dx \\=\frac{1}{2}[\int_{0}^{4} (1-\frac{1}{x^2+1})]dx \\=\frac{1}{2}[\int_{0}^{4} (dx-\frac{1}{x^2+1}dx)] \\=\frac{1}{2}[ x-tan^{-1}x]_{0}^{4} \\=\frac{1}{2}[ 4-tan^{-1}4-0] \\=2-\frac{1}{2}tan^{-1}4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS