∬\iint∬ y/x^2+1da where d = (x,y) 0<x<4 and 0<y< X
∬yx2+1da=∬yx2+1dydx=∫04(∫0xyx2+1dy)dx=∫0412(y2x2+1)0xdx=12∫04x2x2+1dx=12∫04x2+1−1x2+1dx=12[∫04(1−1x2+1)]dx=12[∫04(dx−1x2+1dx)]=12[x−tan−1x]04=12[4−tan−14−0]=2−12tan−14∬ \frac{y}{x^2+1}da \\=∬ \frac{y}{x^2+1} dydx \\=\int_{0}^{4}(\int_{0}^{x}\frac{y}{x^2+1}dy)dx \\=\int_{0}^{4} \frac{1}{2}(\frac{y^2}{x^2+1})^{x}_{0}dx \\=\frac{1}{2}\int_{0}^{4} \frac{x^2}{x^2+1}dx \\=\frac{1}{2}\int_{0}^{4} \frac{x^2+1-1}{x^2+1}dx \\=\frac{1}{2}[\int_{0}^{4} (1-\frac{1}{x^2+1})]dx \\=\frac{1}{2}[\int_{0}^{4} (dx-\frac{1}{x^2+1}dx)] \\=\frac{1}{2}[ x-tan^{-1}x]_{0}^{4} \\=\frac{1}{2}[ 4-tan^{-1}4-0] \\=2-\frac{1}{2}tan^{-1}4∬x2+1yda=∬x2+1ydydx=∫04(∫0xx2+1ydy)dx=∫0421(x2+1y2)0xdx=21∫04x2+1x2dx=21∫04x2+1x2+1−1dx=21[∫04(1−x2+11)]dx=21[∫04(dx−x2+11dx)]=21[x−tan−1x]04=21[4−tan−14−0]=2−21tan−14
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments