Xy^2z^3=8 at (2,2,1)
Let f(x,y,z):xy2z3−8=0f(x,y,z): xy^2z^3-8=0f(x,y,z):xy2z3−8=0
∴δfdx=y2z3;δfdy=2xyz3;δfdz=3xy2z2\therefore \frac{\delta f}{dx}=y^2z^3; \frac{\delta f}{dy}=2xyz^3; \frac{\delta f}{dz}=3xy^2z^2∴dxδf=y2z3;dyδf=2xyz3;dzδf=3xy2z2
At (2,2,1):(2,2,1):(2,2,1):
δfdx=4;δfdy=8;δfdx=24\frac{\delta f}{dx}=4;\frac{\delta f}{dy}=8;\frac{\delta f}{dx}=24dxδf=4;dyδf=8;dxδf=24
Therefore, equation of tangent is:
4(x−2)+8(y−2)+24(z−1)=0⇒x−2+2y−4+6z−6⇒x+2y+6z=124(x-2)+8(y-2)+24(z-1)=0\\ \Rightarrow x-2+2y-4+6z-6\\ \Rightarrow x+2y+6z=124(x−2)+8(y−2)+24(z−1)=0⇒x−2+2y−4+6z−6⇒x+2y+6z=12
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment