Xy^2z^3=8 at (2,2,1)
Let "f(x,y,z): xy^2z^3-8=0"
"\\therefore \\frac{\\delta f}{dx}=y^2z^3; \\frac{\\delta f}{dy}=2xyz^3; \\frac{\\delta f}{dz}=3xy^2z^2"
At "(2,2,1):"
"\\frac{\\delta f}{dx}=4;\\frac{\\delta f}{dy}=8;\\frac{\\delta f}{dx}=24"
Therefore, equation of tangent is:
"4(x-2)+8(y-2)+24(z-1)=0\\\\\n\\Rightarrow x-2+2y-4+6z-6\\\\\n\\Rightarrow x+2y+6z=12"
Comments
Leave a comment