Answer to Question #255382 in Calculus for Aryaf

Question #255382

Xy^2z^3=8 at (2,2,1)


1
Expert's answer
2021-10-25T16:33:57-0400

Let f(x,y,z):xy2z38=0f(x,y,z): xy^2z^3-8=0

δfdx=y2z3;δfdy=2xyz3;δfdz=3xy2z2\therefore \frac{\delta f}{dx}=y^2z^3; \frac{\delta f}{dy}=2xyz^3; \frac{\delta f}{dz}=3xy^2z^2

At (2,2,1):(2,2,1):

δfdx=4;δfdy=8;δfdx=24\frac{\delta f}{dx}=4;\frac{\delta f}{dy}=8;\frac{\delta f}{dx}=24

Therefore, equation of tangent is:

4(x2)+8(y2)+24(z1)=0x2+2y4+6z6x+2y+6z=124(x-2)+8(y-2)+24(z-1)=0\\ \Rightarrow x-2+2y-4+6z-6\\ \Rightarrow x+2y+6z=12


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment