The Fourier sine series for a function f(x) with period 2L is given as
f(x)=∑n=1∞bnsin(Lnπx) where bn=L2∫0Lf(x)sin(Lnπx) dx
(i) f(x)=e−x,0<x<1
The period of this function is 1, then L=21
bn=212∫021e−xsin(2nπx) dxbn=4[−4π2n2+1e−x(sin(2πnx)+2πncos(2πnx))]∣∣021bn=−4π2n2+18πn(e−21(−1)n−1)
Therefore, the Fourier sine series for f(x) is ;
f(x)=∑n=1∞−4π2n2+18πn(e−21(−1)n−1)sin(2nπx)
(ii) f(x)={x 0<x<2l−x 2l<x<l
f(x) is a periodic function of period l⟹L=2l
bn=l4∫02lxsin(l2nπx) dxbn=l4[4π2n2l2sin(l2πnx)−2πlnxcos(l2πnx)]02lbn=−nπl(−1)n
Therefore, the Fourier sine series for f(x) is;
f(x)=∑n=1∞−nπl(−1)nsin(l2nπx)
Comments