Question #253095

Expand each of the following functions in a Fourier sine series then a Fourier cosine series on the prescribed interval.

(i) 𝑓(𝑥) = 𝑒^−𝑥 ; 0 < 𝑥 < 1,


(ii) 𝑓(𝑥) = { 𝑥 0 < 𝑥 < 𝑙/2 𝑙 − 𝑥 𝑙/2 < 𝑥 < 𝑙 ; 0 < 𝑥 < 𝑙,



1
Expert's answer
2021-10-19T14:52:25-0400

The Fourier sine series for a function f(x) with period 2L is given as

f(x)=n=1bnsin(nπLx)f(x)=\sum_{n=1}^\infty b_n \sin(\frac{n\pi}{L}x) where bn=2L0Lf(x)sin(nπLx) dxb_n=\frac{2}{L}\int_0^Lf(x)\sin(\frac{n\pi}{L}x)~dx


(i) f(x)=ex,0<x<1f(x)=e^{-x}, 0<x<1

The period of this function is 1, then L=12\frac{1}{2}

bn=212012exsin(2nπx) dxbn=4[ex(sin(2πnx)+2πncos(2πnx))4π2n2+1]012bn=8πn4π2n2+1(e12(1)n1)b_n=\frac{2}{\frac{1}{2}}\int_0^{\frac{1}{2}} e^{-x} \sin(2n\pi x)~dx\\ b_n=4\left[-\frac{e^{-x}(\sin(2 \pi n x)+2 \pi n \cos(2 \pi n x))}{4\pi^2 n^2+1}\right]\Biggr|_0^\frac{1}{2}\\ b_n=-\frac{8\pi n}{4\pi^2 n^2 +1}(e^{-\frac{1}{2}} (-1)^n-1)

Therefore, the Fourier sine series for f(x) is ;

f(x)=n=18πn4π2n2+1(e12(1)n1)sin(2nπx)(x)=\sum_{n=1}^\infty -\frac{8\pi n}{4\pi^2 n^2 +1}(e^{-\frac{1}{2}} (-1)^n-1)\sin(2n\pi x)


(ii) f(x)={x          0<x<l2x          l2<x<lf(x)=\begin{cases} x~~~~~~~~~~0<x<\frac{l}{2}\\ -x~~~~~~~~~~\frac{l}{2}<x<l\end{cases}

f(x) is a periodic function of period l    L=l2l \implies L=\frac{l}{2}

bn=4l0l2xsin(2nπlx) dxbn=4l[l2sin(2πnlx)2πlnxcos(2πnlx)4π2n2]0l2bn=lnπ(1)nb_n=\frac{4}{l}\int_0^\frac{l}{2}x\sin(\frac{2n\pi}{l}x)~dx\\ b_n=\frac{4}{l}\left[ \frac{l^2 \sin(\frac{2\pi n}{l}x)-2\pi l n x \cos(\frac{2 \pi n}{l}x)}{4\pi^2n^2}\right]_0^\frac{l}{2}\\ b_n=-\frac{l}{n\pi}(-1)^n

Therefore, the Fourier sine series for f(x) is;

f(x)=n=1lnπ(1)nsin(2nπlx)f(x)=\sum_{n=1}^\infty -\frac{l}{n\pi}(-1)^n\sin(\frac{2n\pi}{l}x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS