Expand each of the following functions in a Fourier sine series then a Fourier cosine series on the prescribed interval.
(i) π(π₯) = π^βπ₯ ; 0 < π₯ < 1,
(ii) π(π₯) = { π₯ 0 < π₯ < π/2 π β π₯ π/2 < π₯ < π ; 0 < π₯ < π,
The Fourier sine series for a function f(x) with period 2L is given as
"f(x)=\\sum_{n=1}^\\infty b_n \\sin(\\frac{n\\pi}{L}x)" where "b_n=\\frac{2}{L}\\int_0^Lf(x)\\sin(\\frac{n\\pi}{L}x)~dx"
(i) "f(x)=e^{-x}, 0<x<1"
The period of this function is 1, then L="\\frac{1}{2}"
"b_n=\\frac{2}{\\frac{1}{2}}\\int_0^{\\frac{1}{2}} e^{-x} \\sin(2n\\pi x)~dx\\\\\nb_n=4\\left[-\\frac{e^{-x}(\\sin(2 \\pi n x)+2 \\pi n \\cos(2 \\pi n x))}{4\\pi^2 n^2+1}\\right]\\Biggr|_0^\\frac{1}{2}\\\\\nb_n=-\\frac{8\\pi n}{4\\pi^2 n^2 +1}(e^{-\\frac{1}{2}} (-1)^n-1)"
Therefore, the Fourier sine series for f(x) is ;
f"(x)=\\sum_{n=1}^\\infty -\\frac{8\\pi n}{4\\pi^2 n^2 +1}(e^{-\\frac{1}{2}} (-1)^n-1)\\sin(2n\\pi x)"
(ii) "f(x)=\\begin{cases}\nx~~~~~~~~~~0<x<\\frac{l}{2}\\\\\n-x~~~~~~~~~~\\frac{l}{2}<x<l\\end{cases}"
f(x) is a periodic function of period "l \\implies L=\\frac{l}{2}"
"b_n=\\frac{4}{l}\\int_0^\\frac{l}{2}x\\sin(\\frac{2n\\pi}{l}x)~dx\\\\\nb_n=\\frac{4}{l}\\left[ \\frac{l^2 \\sin(\\frac{2\\pi n}{l}x)-2\\pi l n x \\cos(\\frac{2 \\pi n}{l}x)}{4\\pi^2n^2}\\right]_0^\\frac{l}{2}\\\\\nb_n=-\\frac{l}{n\\pi}(-1)^n"
Therefore, the Fourier sine series for f(x) is;
"f(x)=\\sum_{n=1}^\\infty -\\frac{l}{n\\pi}(-1)^n\\sin(\\frac{2n\\pi}{l}x)"
Comments
Leave a comment