The Fourier sine series for a function f(x) with period 2L is given as
f ( x ) = ∑ n = 1 ∞ b n sin ( n π L x ) f(x)=\sum_{n=1}^\infty b_n \sin(\frac{n\pi}{L}x) f ( x ) = ∑ n = 1 ∞ b n sin ( L nπ x ) where b n = 2 L ∫ 0 L f ( x ) sin ( n π L x ) d x b_n=\frac{2}{L}\int_0^Lf(x)\sin(\frac{n\pi}{L}x)~dx b n = L 2 ∫ 0 L f ( x ) sin ( L nπ x ) d x
(i) f ( x ) = e − x , 0 < x < 1 f(x)=e^{-x}, 0<x<1 f ( x ) = e − x , 0 < x < 1
The period of this function is 1, then L=1 2 \frac{1}{2} 2 1
b n = 2 1 2 ∫ 0 1 2 e − x sin ( 2 n π x ) d x b n = 4 [ − e − x ( sin ( 2 π n x ) + 2 π n cos ( 2 π n x ) ) 4 π 2 n 2 + 1 ] ∣ 0 1 2 b n = − 8 π n 4 π 2 n 2 + 1 ( e − 1 2 ( − 1 ) n − 1 ) b_n=\frac{2}{\frac{1}{2}}\int_0^{\frac{1}{2}} e^{-x} \sin(2n\pi x)~dx\\
b_n=4\left[-\frac{e^{-x}(\sin(2 \pi n x)+2 \pi n \cos(2 \pi n x))}{4\pi^2 n^2+1}\right]\Biggr|_0^\frac{1}{2}\\
b_n=-\frac{8\pi n}{4\pi^2 n^2 +1}(e^{-\frac{1}{2}} (-1)^n-1) b n = 2 1 2 ∫ 0 2 1 e − x sin ( 2 nπ x ) d x b n = 4 [ − 4 π 2 n 2 + 1 e − x ( s i n ( 2 πn x ) + 2 πn c o s ( 2 πn x )) ] ∣ ∣ 0 2 1 b n = − 4 π 2 n 2 + 1 8 πn ( e − 2 1 ( − 1 ) n − 1 )
Therefore, the Fourier sine series for f(x) is ;
f( x ) = ∑ n = 1 ∞ − 8 π n 4 π 2 n 2 + 1 ( e − 1 2 ( − 1 ) n − 1 ) sin ( 2 n π x ) (x)=\sum_{n=1}^\infty -\frac{8\pi n}{4\pi^2 n^2 +1}(e^{-\frac{1}{2}} (-1)^n-1)\sin(2n\pi x) ( x ) = ∑ n = 1 ∞ − 4 π 2 n 2 + 1 8 πn ( e − 2 1 ( − 1 ) n − 1 ) sin ( 2 nπ x )
(ii) f ( x ) = { x 0 < x < l 2 − x l 2 < x < l f(x)=\begin{cases}
x~~~~~~~~~~0<x<\frac{l}{2}\\
-x~~~~~~~~~~\frac{l}{2}<x<l\end{cases} f ( x ) = { x 0 < x < 2 l − x 2 l < x < l
f(x) is a periodic function of period l ⟹ L = l 2 l \implies L=\frac{l}{2} l ⟹ L = 2 l
b n = 4 l ∫ 0 l 2 x sin ( 2 n π l x ) d x b n = 4 l [ l 2 sin ( 2 π n l x ) − 2 π l n x cos ( 2 π n l x ) 4 π 2 n 2 ] 0 l 2 b n = − l n π ( − 1 ) n b_n=\frac{4}{l}\int_0^\frac{l}{2}x\sin(\frac{2n\pi}{l}x)~dx\\
b_n=\frac{4}{l}\left[ \frac{l^2 \sin(\frac{2\pi n}{l}x)-2\pi l n x \cos(\frac{2 \pi n}{l}x)}{4\pi^2n^2}\right]_0^\frac{l}{2}\\
b_n=-\frac{l}{n\pi}(-1)^n b n = l 4 ∫ 0 2 l x sin ( l 2 nπ x ) d x b n = l 4 [ 4 π 2 n 2 l 2 s i n ( l 2 πn x ) − 2 π l n x c o s ( l 2 πn x ) ] 0 2 l b n = − nπ l ( − 1 ) n
Therefore, the Fourier sine series for f(x) is;
f ( x ) = ∑ n = 1 ∞ − l n π ( − 1 ) n sin ( 2 n π l x ) f(x)=\sum_{n=1}^\infty -\frac{l}{n\pi}(-1)^n\sin(\frac{2n\pi}{l}x) f ( x ) = ∑ n = 1 ∞ − nπ l ( − 1 ) n sin ( l 2 nπ x )
Comments