Question #252889

Show that whether x5 + 10x3 + x + 1 is O(x4) or not?


1
Expert's answer
2021-11-16T18:45:22-0500

Let us show by contradiction that x5+10x3+x+1x^5 + 10x^3 + x + 1 is not O(x4)O(x^4).

Suppose that x5+10x3+x+1x^5 + 10x^3 + x + 1 is O(x4)O(x^4).

Then there exist a constant CC and x0x_0 such that x5+10x3+x+1Cx4x^5 + 10x^3 + x + 1\le Cx^4 for all xx0.x\ge x_0.

 It follows that x5+10x3+x+1x4C\frac{x^5 + 10x^3 + x + 1}{x^4}\le C for all xx0.x\ge x_0.

Since limxx5+10x3+x+1x4=limx(x+10x+1x3+1x4)=,\lim\limits_{x\to\infty}\frac{x^5 + 10x^3 + x + 1}{x^4} =\lim\limits_{x\to\infty}(x+\frac{10}{x}+\frac{1}{x^3}+\frac{1}{x^4})=\infty, 

we conclude that there exists x1>x0x_1>x_0 such that x15+10x13+x1+1x4>C.\frac{x_1^5 + 10x_1^3 + x_1 + 1}{x^4}> C. 

This contradiction proves that x5+10x3+x+1x^5 + 10x^3 + x + 1 is not O(x4)O(x^4).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS