Consider the given series: ∑ k = 1 ∞ k k 2 + k + 1 \sum_{k=1}^{\infty }\frac{\sqrt{k}}{k^2+k+1} ∑ k = 1 ∞ k 2 + k + 1 k
Use Limit Comparison Test, to test the convergence of the give series.
Let a k = k k 2 + k + 1 a_{k}=\frac{\sqrt{k}}{k^2+k+1} a k = k 2 + k + 1 k
Take b k = k k 2 = 1 k 3 2 b_{k}=\frac{\sqrt{k}}{k^2}=\frac{1}{k^{\frac{3}{2}}} b k = k 2 k = k 2 3 1
Using Limit Comparison Test, we have
lim k → ∞ a k b k = lim k → ∞ k k 2 + k + 1 × k k 1 = lim k → ∞ k 2 k 2 + k + 1 = 1 ≠ 0 \lim_{k\rightarrow \infty }\frac{a_{k}}{b_k}=\lim_{k\rightarrow \infty }\frac{\sqrt{k}}{k^2+k+1}\times \frac{k\sqrt{k}}{1}=\lim_{k\rightarrow \infty }\frac{k^2}{k^2+k+1}=1\neq 0 lim k → ∞ b k a k = lim k → ∞ k 2 + k + 1 k × 1 k k = lim k → ∞ k 2 + k + 1 k 2 = 1 = 0
So, Limit Comparison Test can be applied
And the series ∑ k = 1 ∞ 1 k 3 / 2 \sum_{k=1}^{\infty }\frac{1}{k^{3/2}} ∑ k = 1 ∞ k 3/2 1 is convergent by using p − p- p − series ( p = 3 2 > 1 ) (p=\frac{3}{2}>1) ( p = 2 3 > 1 )
So, By Limit Comparison Test, the given series ∑ k = 1 ∞ k k 2 + k + 1 \sum_{k=1}^{\infty }\frac{\sqrt{k}}{k^2+k+1} ∑ k = 1 ∞ k 2 + k + 1 k is also convergent.
Observe that the given series is a series of positive terms.
Therefore, the given series is absolutely convergent.
2.Consider the series: ∑ k = 1 ∞ k ! 2 k × k 4 \sum_{k=1}^{\infty }\frac{k!}{2^{k}\times k^{4}} ∑ k = 1 ∞ 2 k × k 4 k !
Use Ratio Test to test the convergence of the given series.
Let a k = k ! 2 k × k 4 a_{k}=\frac{k!}{2^{k}\times k^{4}} a k = 2 k × k 4 k !
Then, a k + 1 = ( k + 1 ) ! 2 k + 1 × ( k + 1 ) 4 a_{k+1}=\frac{(k+1)!}{2^{k+1}\times (k+1)^{4}} a k + 1 = 2 k + 1 × ( k + 1 ) 4 ( k + 1 )!
By using Ratio Test, we have L = lim k → ∞ a k + 1 a k L=\lim_{k\rightarrow \infty }\frac{a_{k+1}}{a_{k}} L = lim k → ∞ a k a k + 1
Then, we get L = lim k → ∞ ( k + 1 ) ! 2 k + 1 × ( k + 1 ) 4 × 2 k × k 4 k ! L=\lim_{k\rightarrow \infty }\frac{(k+1)!}{2^{k+1}\times (k+1)^{4}}\times \frac{2^{k}\times k^{4}}{k!} L = lim k → ∞ 2 k + 1 × ( k + 1 ) 4 ( k + 1 )! × k ! 2 k × k 4
By simplification, we get
L = lim k → ∞ k + 1 2 × ( k k + 1 ) 4 = 1 2 × ( 1 ) × ( ∞ ) = ∞ > 1 L=\lim_{k\rightarrow \infty }\frac{k+1}{2}\times (\frac{k}{k+1})^{4}=\frac{1}{2}\times (1)\times (\infty )=\infty >1 L = lim k → ∞ 2 k + 1 × ( k + 1 k ) 4 = 2 1 × ( 1 ) × ( ∞ ) = ∞ > 1
So, the given series is divergent by Ratio Test.
Therefore, the given series is divergent by Ratio Test.
3.Consider the series: ∑ k = 1 ∞ [ k + ( 1 k ) ] 2 ( k 2 + 1 ) 3 / 2 \sum_{k=1}^{\infty }\frac{[k+(\frac{1}{k})]^2}{(k^{2}+1)^{3/2}} ∑ k = 1 ∞ ( k 2 + 1 ) 3/2 [ k + ( k 1 ) ] 2
Let a k = ( k 2 + 1 ) 2 k 2 ( k 2 + 1 ) 3 / 2 a_{k}=\frac{(k^2+1)^2}{k^2(k^2+1)^{3/2}} a k = k 2 ( k 2 + 1 ) 3/2 ( k 2 + 1 ) 2
Use Limit Comparison Test to test the convergence of the given series
Take b k = k 4 k 5 = 1 k b_{k}=\frac{k^4}{k^5}=\frac{1}{k} b k = k 5 k 4 = k 1
By using Limit Comparison Test, we have
L = lim k → ∞ a k b k = lim k → ∞ ( k 2 + 1 ) 2 k 2 ( k 2 + 1 ) 3 / 2 × k 1 L=\lim_{k\rightarrow \infty }\frac{a_{k}}{b_{k}}=\lim_{k\rightarrow \infty }\frac{(k^2+1)^2}{k^2(k^2+1)^{3/2}}\times \frac{k}{1} L = lim k → ∞ b k a k = lim k → ∞ k 2 ( k 2 + 1 ) 3/2 ( k 2 + 1 ) 2 × 1 k
Then, we get L = 1 ≠ 0 L=1\neq 0 L = 1 = 0
So, Limit Comparison Test can be applied.
Now ∑ k = 1 ∞ b k = ∑ k = 1 ∞ 1 k \sum_{k=1}^{\infty }b_k=\sum_{k=1}^{\infty }\frac{1}{k} ∑ k = 1 ∞ b k = ∑ k = 1 ∞ k 1 is divergent by using p − p- p − series ( p = 1 ) (p=1) ( p = 1 )
Therefore, by Limit Comparison Test, the given series ∑ k = 1 ∞ [ k + ( 1 k ) ] 2 ( k 2 + 1 ) 3 / 2 \sum_{k=1}^{\infty }\frac{[k+(\frac{1}{k})]^2}{(k^{2}+1)^{3/2}} ∑ k = 1 ∞ ( k 2 + 1 ) 3/2 [ k + ( k 1 ) ] 2 is also divergent.
Comments