Question #252576

f(x,y)=arctan(2x/(x^2+y^2))


1
Expert's answer
2021-10-18T16:57:53-0400

This question is incomplete but we can find fxf_x here

Given: f(x,y)=arctan(2x/(x2+y2))f(x,y)=arctan(2x/(x^2+y^2))

fx=x[arctan(2x/(x2+y2))]=11+(2x/(x2+y2))2.x[(2x/(x2+y2))]=(x2+y2)2(x2+y2)2+4x2.(x2+y2).x(2x)2x.x(x2+y2)(x2+y2)2=2x2+2y24x2(x2+y2)2+4x2=2y22x2(x2+y2)2+4x2f_x=\frac{\partial }{\partial x}[arctan(2x/(x^2+y^2))] \\=\frac{1}{1+(2x/(x^2+y^2))^2}. \frac{\partial }{\partial x}[(2x/(x^2+y^2))] \\=\frac{(x^2+y^2)^2}{(x^2+y^2)^2+4x^2}.\frac{(x^2+y^2).\frac{\partial }{\partial x}(2x)-2x.\frac{\partial }{\partial x}(x^2+y^2)}{(x^2+y^2)^2} \\=\frac{2x^2+2y^2-4x^2}{(x^2+y^2)^2+4x^2} \\=\frac{2y^2-2x^2}{(x^2+y^2)^2+4x^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS