f(x,y)=arctan(2x/(x^2+y^2))
This question is incomplete but we can find "f_x" here
Given: "f(x,y)=arctan(2x\/(x^2+y^2))"
"f_x=\\frac{\\partial }{\\partial x}[arctan(2x\/(x^2+y^2))]\n\\\\=\\frac{1}{1+(2x\/(x^2+y^2))^2}. \\frac{\\partial }{\\partial x}[(2x\/(x^2+y^2))]\n\\\\=\\frac{(x^2+y^2)^2}{(x^2+y^2)^2+4x^2}.\\frac{(x^2+y^2).\\frac{\\partial }{\\partial x}(2x)-2x.\\frac{\\partial }{\\partial x}(x^2+y^2)}{(x^2+y^2)^2}\n\\\\=\\frac{2x^2+2y^2-4x^2}{(x^2+y^2)^2+4x^2}\n\\\\=\\frac{2y^2-2x^2}{(x^2+y^2)^2+4x^2}"
Comments
Leave a comment