Answer to Question #252401 in Calculus for Steve

Question #252401

The force F (in pounds) acting at an angle θ with the horizontal that is needed to drag a crate weighing W pounds along a horizontal surface at a constant velocity is given by

F = μW/(cosθ +μsinθ)


where μ is a constant called the coefficient of sliding friction between the crate and the surface (see the accompanying figure). Suppose that the crate weighs 150 lb and that μ = 0.3.

(a) Find dF /dθ when θ =30°. Express the answer in units of pounds/degree.


(b) Find dF /dt when θ =30° if θ is decreasing at the rate of 0.5°/s at this instant.


1
Expert's answer
2021-10-18T13:51:04-0400

F=μW(cosθ+μsinθ)dFdθ=μW×(1(cosθ+μsinθ)2)×(sinθ+μcosθ)(a) (dFdθ)θ=30°=(0.3×150)×(1(cos30°+(0.3)sin30°)2)×(sin30°+(0.3)cos30°)=45×(11.03)×(0.24)=10.49 pounds/degreeF = \frac{μW}{(cosθ +μsinθ)}\\ \therefore \frac{dF}{d\theta}=\mu W\times(\frac{-1}{(cosθ +μsinθ)^2})\times(-sin\theta +\mu cos \theta)\\ (a) \ (\frac{dF}{d\theta})_{\theta=30\degree}=(0.3\times 150)\times (\frac{-1}{(cos 30\degree+(0.3)sin 30\degree)^2})\times (-sin30\degree+(0.3)cos30\degree)\\ =45\times (\frac{-1}{1.03})\times (-0.24)\\ =10.49 \ pounds/degree


(b) (dFdt)=(0.3×150)×(1(cosθ+(0.3)sinθ)2)×(sinθ+(0.3)cosθ)×(dθdt)=45×sinθ(0.3)cosθ(cosθ+(0.3)sinθ)2)×(0.5)=22.5(sinθ(0.3)cosθ(cosθ+(0.3)sinθ)2)(b) \ (\frac{dF}{dt})=(0.3\times 150)\times (\frac{-1}{(cos \theta+(0.3)sin \theta)^2})\times (-sin\theta+(0.3)cos\theta)\times (\frac{d\theta}{dt})\\ =45\times \frac{sin\theta-(0.3)cos\theta}{(cos \theta+(0.3)sin \theta)^2})\times (-0.5)\\ =-22.5(\frac{sin\theta-(0.3)cos\theta}{(cos \theta+(0.3)sin \theta)^2})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment