If g(x)=cos 2x. Find g(\pi /4), g(\pi /2), g(\pi -x), g(\pi +x), g(x-\pi /2)
g(x)=cos(2x)g(x)=cos(2x)g(x)=cos(2x)
∴g(π4)=cos(π2)=0g(π2)=cos(π)=−1g(π−x)=cos(2(π−x))=cos(2π−2x)=cos2xg(π+x)=cos(2(π+x))=cos(2π+2x)=cos2xg(x−π2)=cos(2(x−π2))=cos(2x−π)=cos(π−2x)=−cos2x\therefore g(\frac{\pi}{4})=cos(\frac{\pi}{2})=0\\ g(\frac{\pi}{2})=cos(\pi)=-1\\ g(\pi-x)=cos(2(\pi-x))=cos(2\pi-2x)=cos2x\\ g(\pi+x)=cos(2(\pi+x))=cos(2\pi+2x)=cos2x\\ g(x-\frac{\pi}{2})=cos(2(x-\frac{\pi}{2}))=cos(2x-\pi)=cos(\pi-2x)=-cos2x∴g(4π)=cos(2π)=0g(2π)=cos(π)=−1g(π−x)=cos(2(π−x))=cos(2π−2x)=cos2xg(π+x)=cos(2(π+x))=cos(2π+2x)=cos2xg(x−2π)=cos(2(x−2π))=cos(2x−π)=cos(π−2x)=−cos2x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment