If g(x)=cos 2x. Find g(\pi /4), g(\pi /2), g(\pi -x), g(\pi +x), g(x-\pi /2)
"g(x)=cos(2x)"
"\\therefore g(\\frac{\\pi}{4})=cos(\\frac{\\pi}{2})=0\\\\\ng(\\frac{\\pi}{2})=cos(\\pi)=-1\\\\\ng(\\pi-x)=cos(2(\\pi-x))=cos(2\\pi-2x)=cos2x\\\\\ng(\\pi+x)=cos(2(\\pi+x))=cos(2\\pi+2x)=cos2x\\\\\ng(x-\\frac{\\pi}{2})=cos(2(x-\\frac{\\pi}{2}))=cos(2x-\\pi)=cos(\\pi-2x)=-cos2x"
Comments
Leave a comment