Answer to Question #252507 in Calculus for Kenneth Pondang

Question #252507

If g(x)=cos 2x. Find g(\pi /4), g(\pi /2), g(\pi -x), g(\pi +x), g(x-\pi /2)


1
Expert's answer
2021-10-18T15:18:55-0400

g(x)=cos(2x)g(x)=cos(2x)

g(π4)=cos(π2)=0g(π2)=cos(π)=1g(πx)=cos(2(πx))=cos(2π2x)=cos2xg(π+x)=cos(2(π+x))=cos(2π+2x)=cos2xg(xπ2)=cos(2(xπ2))=cos(2xπ)=cos(π2x)=cos2x\therefore g(\frac{\pi}{4})=cos(\frac{\pi}{2})=0\\ g(\frac{\pi}{2})=cos(\pi)=-1\\ g(\pi-x)=cos(2(\pi-x))=cos(2\pi-2x)=cos2x\\ g(\pi+x)=cos(2(\pi+x))=cos(2\pi+2x)=cos2x\\ g(x-\frac{\pi}{2})=cos(2(x-\frac{\pi}{2}))=cos(2x-\pi)=cos(\pi-2x)=-cos2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment