(i)
y′′+y=f(t),y(0)=0,y′(0)=0
f(t)={23t−70≤t≤33<t<∞
Here f(t) is piecewise continuous on(0,∞), then the derivative theorem exists.
So apply both sides Laplace transformation
L(y′′+y)=L(f(t))
L(y′′(t))+L(y(t))=L(f(t))
s2Y(s)−sY(0)−y′(0)+Y(s)=∫0∞e−stf(t)dt
s2Y(s)−s∗0−0+Y(s)=∫0∞e−stf(t)dt
Y(s)(s2+1)=∫0∞e−stf(t)dt
=∫03e−st2dt+∫3∞e−st(3t−7)dt
=2[−se−st]03+∫3∞3e−sttdt−7∫3∞e−stdt
=s−2[e−3s−1]+3∫3∞te−stdt−7∫3∞e−stdt
=s−2[e−3s−1]+3[−ste−st−s21e−st]3∞+s7[e−st]3∞
=s−2e−3s+s2+3[0−0+se−3s+s21e−3s]+s7[0−e−3s]
=s−2e−3s+s2+s3e−3s+s23e−3s+s7e−3s
=e−3s[s−2+s3+s23−s7]+s2
=e−3s[s2−2s+3s+3−7s]+s2
=e−3s[s23−6s]+s2
Y(s)=s2+11[(e−3s(s23−6s))+s2]
Where Y(s) is the Laplace transformation of y(t)
(ii)
y′′+y=f(t),y(0)=0,y′(0)=0
f(t)={t200≤t≤11<t<∞
So we apply Laplace transformation on both sides
L(y′′+y)=L(f(t))
L(y′′(t))+L(y(t))=L(f(t))
s2Y(s)−sY(0)−y′(0)+Y(s)=∫0∞e−stf(t)dt
s2Y(s)−0−0+Y(s)=∫0∞e−stf(t)dt
Where f(t) is a piecewise continuous function
Y(s)(s2+1)=∫01t2e−stdt+∫1∞0∗e−stdt
=∫01t2e−stdt+0
=[t2−se−st]01−∫012t−se−stdt
=[1−se−s+0]−s2[t−se−st−s21e−st]01
=−se−s−s2[−se−s−s2e−s+s21]
=−se−s+s22e−s+s32e−s−s32
=se−s[−1+s2+s22]−s32
Y(s)=(s2+1)se−s[−1+s2+s22]−s3(s2+1)2
Where Y(s) is the Laplace transformation of y(t).
Comments