Solve the following I.V.P. by method of Laplace transform:
(i) π¦ β²β² + π¦ = π(π‘), π¦(0) = 0, π¦ β² (0) = 0 π(π‘) = { 2 0 β€ π‘ β€ 3 3π‘ β 7 3 < π‘ < β
(ii) π¦ β²β² + π¦ = π(π‘), π¦(0) = 0, π¦ β² (0) = 0 π(π‘) = { π‘^2 0 β€ π‘ β€ 1 0 1 < π‘ < β
(i)
"y''+y=f(t),y(0)=0,y'(0)=0"
"f(t)=\\begin{cases}\n 2 &\\text{} 0\\le t\\le 3 \\\\\n 3t-7 &\\text{} 3<t<\\infty\n\\end{cases}"
Here f(t) is piecewise continuous on"(0,\\infty)", then the derivative theorem exists.
So apply both sides Laplace transformation
"L(y''+y)=L(f(t))"
"L(y''(t))+L(y(t))=L(f(t))"
"s^{2}Y(s)-sY(0)-y'(0)+Y(s)=\\int_0^{\\infty}{e^{-st}f(t)dt}"
"s^{2}Y(s)-s*0-0+Y(s)=\\int_0^{\\infty}{e^{-st}f(t)dt}"
"Y(s)(s^{2}+1)=\\int_0^{\\infty}{e^{-st}f(t)dt}"
"=\\int_0^{3}{e^{-st}2dt}+\\int_3^{\\infty}{e^{-st}(3t-7)dt}"
"=2[\\frac{e^{-st}}{-s}]_0^{3}+\\int_3^{\\infty}{3e^{-st}tdt}-7\\int_3^{\\infty}{e^{-st}dt}"
"=\\frac{-2}{s}[e^{-3s}-1]+3\\int_3^{\\infty}{te^{-st}dt}-7\\int_3^{\\infty}{e^{-st}dt}"
"=\\frac{-2}{s}[e^{-3s}-1]+3[\\frac{te^{-st}}{-s}-\\frac{1}{s^{2}}e^{-st}]_3^{\\infty}+\\frac{7}{s}[e^{-st}]_3^{\\infty}"
"=\\frac{-2}{s}e^{-3s}+\\frac{2}{s}+3[0-0+\\frac{e^{-3s}}{s}+\\frac{1}{s^{2}}e^{-3s}]+\\frac{7}{s}[0-e^{-3s}]"
"=\\frac{-2}{s}e^{-3s}+\\frac{2}{s}+\\frac{3e^{-3s}}{s}+\\frac{3e^{-3s}}{s^{2}}+\\frac{7e^{-3s}}{s}"
"=e^{-3s}[\\frac{-2}{s}+\\frac{3}{s}+\\frac{3}{s^{2}}-\\frac{7}{s}]+\\frac{2}{s}"
"=e^{-3s}[\\frac{-2s+3s+3-7s}{s^{2}}]+\\frac{2}{s}"
"=e^{-3s}[\\frac{3-6s}{s^{2}}]+\\frac{2}{s}"
"Y(s)=\\frac{1}{s^{2}+1}[(e^{-3s}(\\frac{3-6s}{s^{2}}))+\\frac{2}{s}]"
Where Y(s) is the Laplace transformation of y(t)
(ii)
"y''+y=f(t),y(0)=0,y'(0)=0"
"f(t)=\\begin{cases}\n t^{2} &\\text{} 0\\le t\\le 1 \\\\\n 0 &\\text{} 1<t<\\infty\n\\end{cases}"
So we apply Laplace transformation on both sides
"L(y''+y)=L(f(t))"
"L(y''(t))+L(y(t))=L(f(t))"
"s^{2}Y(s)-sY(0)-y'(0)+Y(s)=\\int_0^{\\infty}{e^{-st}f(t)dt}"
"s^{2}Y(s)-0-0+Y(s)=\\int_0^{\\infty}{e^{-st}f(t)dt}"
Where f(t) is a piecewise continuous function
"Y(s)(s^{2}+1)=\\int_0^{1}{t^{2}e^{-st}dt}+\\int_1^{\\infty}{0*e^{-st}dt}"
"=\\int_0^{1}{t^{2}e^{-st}dt}+0"
"=[t^{2}\\frac{e^{-st}}{-s}]_0^{1}-\\int_0^{1}{2t\\frac{e^{-st}}{-s}dt}"
"=[1\\frac{e^{-s}}{-s}+0]-\\frac{2}{s}[t\\frac{e^{-st}}{-s}-\\frac{1}{s^{2}}e^{-st}]_0^{1}"
"=-\\frac{e^{-s}}{s}-\\frac{2}{s}[\\frac{e^{-s}}{-s}-\\frac{e^{-s}}{s^{2}}+\\frac{1}{s^{2}}]"
"=-\\frac{e^{-s}}{s}+\\frac{2e^{-s}}{s^{2}}+\\frac{2e^{-s}}{s^{3}}-\\frac{2}{s^{3}}"
"=\\frac{e^{-s}}{s}[-1+\\frac{2}{s}+\\frac{2}{s^{2}}]-\\frac{2}{s^{3}}"
"Y(s)=\\frac{e^{-s}}{(s^{2}+1)s}[-1+\\frac{2}{s}+\\frac{2}{s^{2}}]-\\frac{2}{s^{3}(s^{2}+1)}"
Where Y(s) is the Laplace transformation of y(t).
Comments
Leave a comment