Question #251956

Solve the following I.V.P. by method of Laplace transform:


(i) 𝑦 ′′ + 𝑦 = 𝑓(𝑡), 𝑦(0) = 0, 𝑦 ′ (0) = 0 𝑓(𝑡) = { 2 0 ≤ 𝑡 ≤ 3 3𝑡 − 7 3 < 𝑡 < ∞


(ii) 𝑦 ′′ + 𝑦 = 𝑓(𝑡), 𝑦(0) = 0, 𝑦 ′ (0) = 0 𝑓(𝑡) = { 𝑡^2 0 ≤ 𝑡 ≤ 1 0 1 < 𝑡 < ∞


1
Expert's answer
2021-10-20T18:17:43-0400

(i)

y+y=f(t),y(0)=0,y(0)=0y''+y=f(t),y(0)=0,y'(0)=0

f(t)={20t33t73<t<f(t)=\begin{cases} 2 &\text{} 0\le t\le 3 \\ 3t-7 &\text{} 3<t<\infty \end{cases}

Here f(t) is piecewise continuous on(0,)(0,\infty), then the derivative theorem exists.

So apply both sides Laplace transformation

L(y+y)=L(f(t))L(y''+y)=L(f(t))

L(y(t))+L(y(t))=L(f(t))L(y''(t))+L(y(t))=L(f(t))

s2Y(s)sY(0)y(0)+Y(s)=0estf(t)dts^{2}Y(s)-sY(0)-y'(0)+Y(s)=\int_0^{\infty}{e^{-st}f(t)dt}

s2Y(s)s00+Y(s)=0estf(t)dts^{2}Y(s)-s*0-0+Y(s)=\int_0^{\infty}{e^{-st}f(t)dt}

Y(s)(s2+1)=0estf(t)dtY(s)(s^{2}+1)=\int_0^{\infty}{e^{-st}f(t)dt}

=03est2dt+3est(3t7)dt=\int_0^{3}{e^{-st}2dt}+\int_3^{\infty}{e^{-st}(3t-7)dt}

=2[ests]03+33esttdt73estdt=2[\frac{e^{-st}}{-s}]_0^{3}+\int_3^{\infty}{3e^{-st}tdt}-7\int_3^{\infty}{e^{-st}dt}

=2s[e3s1]+33testdt73estdt=\frac{-2}{s}[e^{-3s}-1]+3\int_3^{\infty}{te^{-st}dt}-7\int_3^{\infty}{e^{-st}dt}

=2s[e3s1]+3[tests1s2est]3+7s[est]3=\frac{-2}{s}[e^{-3s}-1]+3[\frac{te^{-st}}{-s}-\frac{1}{s^{2}}e^{-st}]_3^{\infty}+\frac{7}{s}[e^{-st}]_3^{\infty}

=2se3s+2s+3[00+e3ss+1s2e3s]+7s[0e3s]=\frac{-2}{s}e^{-3s}+\frac{2}{s}+3[0-0+\frac{e^{-3s}}{s}+\frac{1}{s^{2}}e^{-3s}]+\frac{7}{s}[0-e^{-3s}]

=2se3s+2s+3e3ss+3e3ss2+7e3ss=\frac{-2}{s}e^{-3s}+\frac{2}{s}+\frac{3e^{-3s}}{s}+\frac{3e^{-3s}}{s^{2}}+\frac{7e^{-3s}}{s}

=e3s[2s+3s+3s27s]+2s=e^{-3s}[\frac{-2}{s}+\frac{3}{s}+\frac{3}{s^{2}}-\frac{7}{s}]+\frac{2}{s}

=e3s[2s+3s+37ss2]+2s=e^{-3s}[\frac{-2s+3s+3-7s}{s^{2}}]+\frac{2}{s}

=e3s[36ss2]+2s=e^{-3s}[\frac{3-6s}{s^{2}}]+\frac{2}{s}

Y(s)=1s2+1[(e3s(36ss2))+2s]Y(s)=\frac{1}{s^{2}+1}[(e^{-3s}(\frac{3-6s}{s^{2}}))+\frac{2}{s}]

Where Y(s) is the Laplace transformation of y(t)


(ii)

y+y=f(t),y(0)=0,y(0)=0y''+y=f(t),y(0)=0,y'(0)=0

f(t)={t20t101<t<f(t)=\begin{cases} t^{2} &\text{} 0\le t\le 1 \\ 0 &\text{} 1<t<\infty \end{cases}

So we apply Laplace transformation on both sides

L(y+y)=L(f(t))L(y''+y)=L(f(t))

L(y(t))+L(y(t))=L(f(t))L(y''(t))+L(y(t))=L(f(t))

s2Y(s)sY(0)y(0)+Y(s)=0estf(t)dts^{2}Y(s)-sY(0)-y'(0)+Y(s)=\int_0^{\infty}{e^{-st}f(t)dt}

s2Y(s)00+Y(s)=0estf(t)dts^{2}Y(s)-0-0+Y(s)=\int_0^{\infty}{e^{-st}f(t)dt}

Where f(t) is a piecewise continuous function

Y(s)(s2+1)=01t2estdt+10estdtY(s)(s^{2}+1)=\int_0^{1}{t^{2}e^{-st}dt}+\int_1^{\infty}{0*e^{-st}dt}

=01t2estdt+0=\int_0^{1}{t^{2}e^{-st}dt}+0

=[t2ests]01012testsdt=[t^{2}\frac{e^{-st}}{-s}]_0^{1}-\int_0^{1}{2t\frac{e^{-st}}{-s}dt}

=[1ess+0]2s[tests1s2est]01=[1\frac{e^{-s}}{-s}+0]-\frac{2}{s}[t\frac{e^{-st}}{-s}-\frac{1}{s^{2}}e^{-st}]_0^{1}

=ess2s[essess2+1s2]=-\frac{e^{-s}}{s}-\frac{2}{s}[\frac{e^{-s}}{-s}-\frac{e^{-s}}{s^{2}}+\frac{1}{s^{2}}]

=ess+2ess2+2ess32s3=-\frac{e^{-s}}{s}+\frac{2e^{-s}}{s^{2}}+\frac{2e^{-s}}{s^{3}}-\frac{2}{s^{3}}

=ess[1+2s+2s2]2s3=\frac{e^{-s}}{s}[-1+\frac{2}{s}+\frac{2}{s^{2}}]-\frac{2}{s^{3}}

Y(s)=es(s2+1)s[1+2s+2s2]2s3(s2+1)Y(s)=\frac{e^{-s}}{(s^{2}+1)s}[-1+\frac{2}{s}+\frac{2}{s^{2}}]-\frac{2}{s^{3}(s^{2}+1)}

Where Y(s) is the Laplace transformation of y(t).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS