Question #251474

Differentiate from first principle y=tanx


1
Expert's answer
2021-10-15T09:50:49-0400
(tanx)=limh0tan(x+h)tanxh(\tan x)'=\lim\limits_{h\to 0}\dfrac{\tan(x+h)-\tan x}{h}

=limh0sin(x+h)cos(x+h)sinxcosxh=\lim\limits_{h\to 0}\dfrac{\dfrac{\sin(x+h)}{\cos(x+h)}-\dfrac{\sin x}{\cos x}}{h}

=limh0sin(x+h)cosxsinxcos(x+h)cos(x+h)cosxh=\lim\limits_{h\to 0}\dfrac{\dfrac{\sin(x+h)\cos x-\sin x\cos(x+h)}{\cos(x+h)\cos x}}{h}

=limh0sin(x+hx)hcos(x+h)cosx=\lim\limits_{h\to 0}\dfrac{\sin(x+h-x)}{h\cos(x+h)\cos x}

=limh0sin(h)hlimh01cos(x+h)cosx=\lim\limits_{h\to 0}\dfrac{\sin(h)}{h}\lim\limits_{h\to 0}\dfrac{1}{\cos(x+h)\cos x}

=1(1cos(x+0)cosx)=1(\dfrac{1}{\cos(x+0)\cos x})

=1cos2x=\dfrac{1}{\cos^2 x}

(tanx)=1cos2x(\tan x)'=\dfrac{1}{\cos^2 x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS