Differentiate from first principle y=tanx
"=\\lim\\limits_{h\\to 0}\\dfrac{\\dfrac{\\sin(x+h)}{\\cos(x+h)}-\\dfrac{\\sin x}{\\cos x}}{h}"
"=\\lim\\limits_{h\\to 0}\\dfrac{\\dfrac{\\sin(x+h)\\cos x-\\sin x\\cos(x+h)}{\\cos(x+h)\\cos x}}{h}"
"=\\lim\\limits_{h\\to 0}\\dfrac{\\sin(x+h-x)}{h\\cos(x+h)\\cos x}"
"=\\lim\\limits_{h\\to 0}\\dfrac{\\sin(h)}{h}\\lim\\limits_{h\\to 0}\\dfrac{1}{\\cos(x+h)\\cos x}"
"=1(\\dfrac{1}{\\cos(x+0)\\cos x})"
"=\\dfrac{1}{\\cos^2 x}"
"(\\tan x)'=\\dfrac{1}{\\cos^2 x}"
Comments
Leave a comment