Question #251356

Find an equation of the line tangent to the curve y=3x²-1 and perpendicular to the line x-3y=4


1
Expert's answer
2021-10-15T04:56:22-0400

Let y=g(x) be a sought line.

The equation of y=g(x) could be found the following way: g(x)g0=k1(xx0)g(x) - g{\scriptscriptstyle 0} = k{\scriptscriptstyle 1}(x-x{\scriptscriptstyle 0}), where (x0,y0)x{\scriptscriptstyle 0},y{\scriptscriptstyle 0}) is the point belonging to a line, k1k{\scriptscriptstyle 1} is the slope of the line.

Since y=g(x) is perpendicular to x-3y=4, then k1k2=1k{\scriptscriptstyle 1}k{\scriptscriptstyle 2}=-1, where k2k{\scriptscriptstyle 2} is the slope of the second line.

x3y=43y=x4y=x343k2=13x-3y=4\to 3y=x-4\to y = {\frac x 3} - {\frac 4 3} \to k{\scriptscriptstyle 2} = {\frac 1 3}

13k1=1k1=3{\frac 1 3}k{\scriptscriptstyle 1} = -1 \to k{\scriptscriptstyle 1} = -3

g(x) is tangent to y=3x21y = 3x^{2} -1. The slope for the tangent line to y=3x21y = 3x^{2} -1 is y=6xy'=6x

Then 6x0=36x_0 = -3

x0x{\scriptscriptstyle 0} = -0.5

y0=3(0.5)21=0.25y{\scriptscriptstyle 0} = 3*(-0.5)^{2} -1 = -0.25

Then g(x)+0.25=3(x+0.5)g(x)=3x1.75g(x) + 0.25 = -3(x +0.5) \to g(x) = -3x - 1.75

So, the equation of a sought line is 4y+12x+74y + 12x + 7 = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS