Question #251065

Write the first four terms of a Maclaurin series for 𝑓(𝑥)= 𝑒𝑥


1
Expert's answer
2021-10-14T15:24:02-0400

f(x)=exf(x)=exf(x)=exf(x)=exf(x) = {e^x} \Rightarrow f'(x) = {e^x} \Rightarrow f''(x) = {e^x} \Rightarrow f'''(x) = {e^x}

Then

f(x)=f(0)+f(0)1!x+f(0)2!x2+f(0)3!x3+...=e0+e01x+e02x2+e06x3+...=1+x+12x2+16x3+...f(x) = f(0) + \frac{{f'(0)}}{{1!}}x + \frac{{f''(0)}}{{2!}}{x^2} + \frac{{f'''(0)}}{{3!}}{x^3} + ... = {e^0} + \frac{{{e^0}}}{1}x + \frac{{{e^0}}}{2}{x^2} + \frac{{{e^0}}}{6}{x^3} + ... = 1 + x + \frac{1}{2}{x^2} + \frac{1}{6}{x^3} + ...

Answer: f(x)=1+x+12x2+16x3+...f(x) = 1 + x + \frac{1}{2}{x^2} + \frac{1}{6}{x^3} + ...


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS