Write the first four terms of a Maclaurin series for 𝑓(𝑥)= 𝑒𝑥
f(x)=ex⇒f′(x)=ex⇒f′′(x)=ex⇒f′′′(x)=exf(x) = {e^x} \Rightarrow f'(x) = {e^x} \Rightarrow f''(x) = {e^x} \Rightarrow f'''(x) = {e^x}f(x)=ex⇒f′(x)=ex⇒f′′(x)=ex⇒f′′′(x)=ex
Then
f(x)=f(0)+f′(0)1!x+f′′(0)2!x2+f′′′(0)3!x3+...=e0+e01x+e02x2+e06x3+...=1+x+12x2+16x3+...f(x) = f(0) + \frac{{f'(0)}}{{1!}}x + \frac{{f''(0)}}{{2!}}{x^2} + \frac{{f'''(0)}}{{3!}}{x^3} + ... = {e^0} + \frac{{{e^0}}}{1}x + \frac{{{e^0}}}{2}{x^2} + \frac{{{e^0}}}{6}{x^3} + ... = 1 + x + \frac{1}{2}{x^2} + \frac{1}{6}{x^3} + ...f(x)=f(0)+1!f′(0)x+2!f′′(0)x2+3!f′′′(0)x3+...=e0+1e0x+2e0x2+6e0x3+...=1+x+21x2+61x3+...
Answer: f(x)=1+x+12x2+16x3+...f(x) = 1 + x + \frac{1}{2}{x^2} + \frac{1}{6}{x^3} + ...f(x)=1+x+21x2+61x3+...
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments