Answer to Question #251506 in Calculus for Matt

Question #251506

Expand f(x) = e2x+3x2e^{2x} + 3x^2 in a Taylor series at a = 3 to the third derivative degree


1
Expert's answer
2021-10-15T09:49:02-0400

Solution:

f(x)=e2x+3x2f(x)=2e2x+6xf(x)=4e2x+6f(x)=8e2xf(x)=e^{2x}+3x^2 \\f'(x)=2e^{2x}+6x \\f''(x)=4e^{2x}+6 \\f'''(x)=8e^{2x}

Then, at x=3x=3,

f(3)=e6+27f(3)=2e6+18f(3)=4e6+6f(3)=8e6f(3)=e^6+27 \\f'(3)=2e^6+18 \\f''(3)=4e^6+6 \\f'''(3)=8e^6

We know that, Taylor series expansion at a = 3 to the third derivative degree is

f(x)=P3(x)=f(3)+f(3)(x3)+f(3)2(x3)2+f(3)3×2(x3)3f(x)=P_3(x)=f(3)+f'(3)(x-3)+\dfrac{f''(3)}{2}(x-3)^2+\dfrac{f'''(3)}{3\times2}(x-3)^3

=e6+27+(2e6+18)(x3)+4e6+62(x3)2+8e66(x3)3=e^6+27+(2e^6+18)(x-3)+\dfrac{4e^6+6}2(x-3)^2+\dfrac{8e^6}6(x-3)^3

=4e6x330e6x2+9x2+78e6x69e63=\dfrac{4e^6x^3-30e^6x^2+9x^2+78e^6x-69e^6}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment