Solution:
f(x)=e2x+3x2f′(x)=2e2x+6xf′′(x)=4e2x+6f′′′(x)=8e2x
Then, at x=3,
f(3)=e6+27f′(3)=2e6+18f′′(3)=4e6+6f′′′(3)=8e6
We know that, Taylor series expansion at a = 3 to the third derivative degree is
f(x)=P3(x)=f(3)+f′(3)(x−3)+2f′′(3)(x−3)2+3×2f′′′(3)(x−3)3
=e6+27+(2e6+18)(x−3)+24e6+6(x−3)2+68e6(x−3)3
=34e6x3−30e6x2+9x2+78e6x−69e6
Comments
Leave a comment