Question #251513

Determine the largest capacity of a cylindrical tank if its surface area (without lid) should be equal to S


1
Expert's answer
2021-10-18T16:25:53-0400

The surface area of the cylinder without the lid is S=2πrh+πr2S=2\pi rh+\pi r^2 and the maximum volume will be V=πr2hV=\pi r^2 h. From the first expression, we find h=S2πrr2h=\cfrac{S}{2\pi r}-\cfrac{r}{2} and we substitute this on the formula for S to find:


V=πr2(S2πrr2)=S2rπ2r3V=\pi r^2 (\frac{S}{2\pi r}-\frac{r}{2} )=\cfrac{S}{2}\cdot r-\cfrac{\pi}{2}\cdot r^3


We proceed to find the maximum for V in terms of r when V'(r) = 0:


V(r)=ddr(S2rπ2r3)V(r)=S23π2r2=0V(r)=3πrV(r)=S23π2r2=0S2=3π2r2    r=S3πV'_{(r)}=\cfrac{d}{dr} \Bigg( \cfrac{S}{2}\cdot r-\cfrac{\pi}{2}\cdot r^3 \Bigg) \\ V'_{(r)}= \cfrac{S}{2}-\cfrac{3\pi}{2}\cdot r^2=0 \\ \therefore V''_{(r)}= -3\pi\cdot r \\ V'_{(r)}= \cfrac{S}{2}-\cfrac{3\pi}{2}\cdot r^2=0 \\ \cfrac{S}{2}=\cfrac{3\pi}{2}\cdot r^2 \implies r=\sqrt{\cfrac{S}{3\pi}}


Once we find out the value for r, we proceed to substitute and find

h=S2πrr2=S2πS3πS3π2h=12(3SπS3π)=S3π(332)h= \cfrac{S}{2\pi r}-\cfrac{r}{2} = \cfrac{S}{2\pi \sqrt{\cfrac{S}{3\pi}}}-\cfrac{\sqrt{\cfrac{S}{3\pi}}}{2} \\ \therefore h=\cfrac{1}{2} \Bigg( \sqrt{\cfrac{3S}{\pi}}-\sqrt{\cfrac{S}{3\pi}} \, \Bigg)=\sqrt{\cfrac{S}{3\pi}} \Bigg( \cfrac{3-\sqrt{3}}{2} \, \Bigg)


The fist result is valid because V''(r) is negative and this occurs when V(r) is at a maximum. In conclusion, the dimensions for the cylinder to have the maximum volume (with a surface area S) are h=S3π(332)h=\sqrt{\cfrac{S}{3\pi}} \Bigg( \cfrac{3-\sqrt{3}}{2} \, \Bigg) and r=S3πr=\sqrt{\cfrac{S}{3\pi}}.



Reference:

  • Thomas, G. B., & Finney, R. L. (1961). Calculus. Addison-Wesley Publishing Company.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS