Determine the largest capacity of a cylindrical tank if its surface area (without lid) should be equal to S
The surface area of the cylinder without the lid is "S=2\\pi rh+\\pi r^2" and the maximum volume will be "V=\\pi r^2 h". From the first expression, we find "h=\\cfrac{S}{2\\pi r}-\\cfrac{r}{2}" and we substitute this on the formula for S to find:
"V=\\pi r^2 (\\frac{S}{2\\pi r}-\\frac{r}{2} )=\\cfrac{S}{2}\\cdot r-\\cfrac{\\pi}{2}\\cdot r^3"
We proceed to find the maximum for V in terms of r when V'(r) = 0:
"V'_{(r)}=\\cfrac{d}{dr} \\Bigg( \\cfrac{S}{2}\\cdot r-\\cfrac{\\pi}{2}\\cdot r^3 \\Bigg)\n\\\\ V'_{(r)}= \\cfrac{S}{2}-\\cfrac{3\\pi}{2}\\cdot r^2=0\n\\\\ \\therefore V''_{(r)}= -3\\pi\\cdot r\n\\\\ V'_{(r)}= \\cfrac{S}{2}-\\cfrac{3\\pi}{2}\\cdot r^2=0\n\\\\ \\cfrac{S}{2}=\\cfrac{3\\pi}{2}\\cdot r^2 \\implies r=\\sqrt{\\cfrac{S}{3\\pi}}"
Once we find out the value for r, we proceed to substitute and find
"h= \\cfrac{S}{2\\pi r}-\\cfrac{r}{2} = \\cfrac{S}{2\\pi \\sqrt{\\cfrac{S}{3\\pi}}}-\\cfrac{\\sqrt{\\cfrac{S}{3\\pi}}}{2} \n\\\\ \\therefore h=\\cfrac{1}{2} \\Bigg( \\sqrt{\\cfrac{3S}{\\pi}}-\\sqrt{\\cfrac{S}{3\\pi}} \\, \\Bigg)=\\sqrt{\\cfrac{S}{3\\pi}} \\Bigg( \\cfrac{3-\\sqrt{3}}{2} \\, \\Bigg)"
Comments
Leave a comment