tangent line to the curve at point (x0, y0):
y−y0=f′(x0)(x−x0)
intersections of tangent line with axes:
y=0⟹−y0=f′(x0)(x−x0)
x=−y0/f′(x0)+x0
x=0⟹y=−f′(x0)x0+y0
So, the area of the triangle:
S=∣xy∣/2=∣(−y0/f′(x0)+x0)(−f′(x0)x0+y0)∣/2
Comments