3x−2y=6
y=23x−3
slope=m=23
x2+y2=13 Differentiate both sides with respect to x and use the Chain Rule
2x+2yy′=0
x+yy′=0 Then
x1+y1y′(x1)=0 Substitute
y′(x1)=slope=m=23
x1+23y1=0
x1=−23y1 Point (x1,y1) lies on the circle
x12+y12=13 Then
(−23y1)2+y12=13
y12=4
y1=±2
Point (−3,2) and Point (3,−2).
Comments