Show that π(βπ, π) = βπΏ(π, π) and πΏ(βπ, π) = βπ(π, π)
π(π, π) and πΏ(π, π) are upper and lower Riemann sums for the partition p.
"\ud835\udc48(\ud835\udc53, \ud835\udc5d)=\\sum M_i\\Delta x_i,\\ L(\ud835\udc53, \ud835\udc5d)=\\sum m_i\\Delta x_i"
"M_i=sup\\{f(x):x_{i-1}\\le x \\le x_i\\},\\ m_i=inf\\{f(x):x_{i-1}\\le x \\le x_i\\}"
"sup\\{-f(x):x_{i-1}\\le x \\le x_i\\}=-inf\\{f(x):x_{i-1}\\le x \\le x_i\\}=-m_i"
"U(-f,p)=-\\sum m_i\\Delta x_i=-L(f,p)"
"inf\\{-f(x):x_{i-1}\\le x \\le x_i\\}=-sup\\{f(x):x_{i-1}\\le x \\le x_i\\}=-M_i"
"L(-f,p)=-\\sum M_i\\Delta x_i=-U(f,p)"
Comments
Leave a comment