Question #249311

What are dimensions of rectangular prism with the largest possible volume that can be construed using 2400 square inches of surface area ?


1
Expert's answer
2021-10-11T15:58:30-0400

If we are assuming a fully rectangular prism---right angles all around---then


2xy+2(x+y)z=24002xy+2(x+y)z=2400

xy+(x+y)z=1200xy+(x+y)z=1200

z=1200xyx+yz=\dfrac{1200-xy}{x+y}

V(x,y)=xy(1200xyx+y)V(x, y)=xy(\dfrac{1200-xy}{x+y})

V(x,y)=1200xyx2y2x+yV(x, y)=\dfrac{1200xy-x^2y^2}{x+y}

Vx=(1200y2xy2)(x+y)(1200xyx2y2)(x+y)2V_x=\dfrac{(1200y-2xy^2)(x+y)-(1200xy-x^2y^2)}{(x+y)^2}

=y2(1200x22xy)(x+y)2=\dfrac{y^2(1200-x^2-2xy)}{(x+y)^2}

Vy=(1200x2x2y)(x+y)(1200xyx2y2)(x+y)2V_y=\dfrac{(1200x-2x^2y)(x+y)-(1200xy-x^2y^2)}{(x+y)^2}

=x2(1200y22xy)(x+y)2=\dfrac{x^2(1200-y^2-2xy)}{(x+y)^2}

Find the critical (stationary) point(s)

Vx=0Vy=0\begin{matrix} V_x=0 \\ V_y=0 \end{matrix}

y2(1200x22xy)=0y^2(1200-x^2-2xy)=0

x2(1200y22xy)=0x^2(1200-y^2-2xy)=0

Then for x>0,y>0x>0, y>0


x2y2=0x^2-y^2=0

(xy)(x+y)=0(x-y)(x+y)=0

x=yx=y

1200x22x2=01200-x^2-2x^2=0

x2=400,x>0x^2=400, x>0

x=20=yx=20=y

z=120020(20)20+20=20z=\dfrac{1200-20(20)}{20+20}=20


V=20(20)(20)=8000(in3)V=20(20)(20)=8000 (in^3)


Vxx=2y2(y2+1200)(x+y)3V_{xx}=\dfrac{-2y^2(y^2+1200)}{(x+y)^3}

Vyy=2x2(x2+1200)(x+y)3V_{yy}=\dfrac{-2x^2(x^2+1200)}{(x+y)^3}

Vxy=2xy(x2+y2+3xy1200)(x+y)3=VyxV_{xy}=\dfrac{-2xy(x^2+y^2+3xy-1200)}{(x+y)^3}=V_{yx}

Vxx(20,20)=2(20)2((20)2+1200)(20+20)3=20<0V_{xx}(20,20)=\dfrac{-2(20)^2((20)^2+1200)}{(20+20)^3}=-20<0

Vyy(20,20)=2(20)2((20)2+1200)(20+20)3=20V_{yy}(20,20)=\dfrac{-2(20)^2((20)^2+1200)}{(20+20)^3}=-20

Vxy(20,20)=2(20)(20)((20)2+(20)2+3(20)(20)1200)(20+20)3V_{xy}(20,20)=\dfrac{-2(20)(20)((20)^2+(20)^2+3(20)(20)-1200)}{(20+20)^3}

=10=-10


D=20101020=300>0D=\begin{vmatrix} -20 & -10 \\ -10 & -20 \end{vmatrix}=300>0

The volume has a relative maximum at (20,20).(20, 20). Since there is the only stationary point for x>0,y>0,x>0, y>0, then the volume has the absolute maximum for x>0,y>0x>0, y>0 at (20,20).(20, 20).

We have the cube with side 2020 inches.


Vmax=20(20)(20)=8000 in3V_{max}=20(20)(20)=8000\ in^3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS