What are dimensions of rectangular prism with the largest possible volume that can be construed using 2400 square inches of surface area ?
If we are assuming a fully rectangular prism---right angles all around---then
"xy+(x+y)z=1200"
"z=\\dfrac{1200-xy}{x+y}"
"V(x, y)=xy(\\dfrac{1200-xy}{x+y})"
"V(x, y)=\\dfrac{1200xy-x^2y^2}{x+y}"
"V_x=\\dfrac{(1200y-2xy^2)(x+y)-(1200xy-x^2y^2)}{(x+y)^2}"
"=\\dfrac{y^2(1200-x^2-2xy)}{(x+y)^2}"
"V_y=\\dfrac{(1200x-2x^2y)(x+y)-(1200xy-x^2y^2)}{(x+y)^2}"
"=\\dfrac{x^2(1200-y^2-2xy)}{(x+y)^2}"
Find the critical (stationary) point(s)
"\\begin{matrix}\n V_x=0 \\\\\n V_y=0\n\\end{matrix}""y^2(1200-x^2-2xy)=0"
"x^2(1200-y^2-2xy)=0"
Then for "x>0, y>0"
"(x-y)(x+y)=0"
"x=y"
"1200-x^2-2x^2=0"
"x^2=400, x>0"
"x=20=y"
"z=\\dfrac{1200-20(20)}{20+20}=20"
"V_{yy}=\\dfrac{-2x^2(x^2+1200)}{(x+y)^3}"
"V_{xy}=\\dfrac{-2xy(x^2+y^2+3xy-1200)}{(x+y)^3}=V_{yx}"
"V_{xx}(20,20)=\\dfrac{-2(20)^2((20)^2+1200)}{(20+20)^3}=-20<0"
"V_{yy}(20,20)=\\dfrac{-2(20)^2((20)^2+1200)}{(20+20)^3}=-20"
"V_{xy}(20,20)=\\dfrac{-2(20)(20)((20)^2+(20)^2+3(20)(20)-1200)}{(20+20)^3}"
"=-10"
The volume has a relative maximum at "(20, 20)." Since there is the only stationary point for "x>0, y>0," then the volume has the absolute maximum for "x>0, y>0" at "(20, 20)."
We have the cube with side "20" inches.
Comments
Leave a comment