Answer is false.
The mixed partial derivatives ∂x∂y∂2Zand∂y∂x∂2Z are not necessarily equal. If they are continuous at a point then equal at that point. For example let us consider a piece wise defined function,
Z={xyx2+y2x2−y20if (x,y)=(0,0)if (x,y)=(0,0)
=> Z={x2+y2x3y−xy30if (x,y)=(0,0)if (x,y)=(0,0)
Here the symbols fx,fy,fxyandfyx are used for partial and mixed partial derivatives
fx={(x2+y2)2(x2+y2)(y3−3x2y)−(xy3−x3y)2x0if (x,y)=(0,0)if (x,y)=(0,0)
fx={x2+y2(3x2−y3)−(x2+y2)22x(x3y−xy3))0if (x,y)=(0,0)if (x,y)=(0,0) Similarly
fy={x2+y2(x3−3xy2)−(x2+y2)22y(x3y−xy3))0if (x,y)=(0,0)if (x,y)=(0,0) So
fxy(0,0)=limh−>0hfx(0,h)−fx(0,0)=limh−>0h2h−h3=−1
fyx(0,0)=limh−>0hfy(h,0)−fy(0,0)=limh−>0h2hh3=1
(∂x∂y∂2Z)(0,0)=−1and(∂y∂x∂2Z)(0,0)=1
So ∂x∂y∂2Z=∂y∂x∂2Z
Comments