Question #249194

True or False:

The mixed partial derivatives 2zyx\displaystyle{\frac{\partial^2 z}{\partial y \partial x}}  and 2zxy\displaystyle{\frac{\partial^2 z}{\partial x \partial y}}   are equal


1
Expert's answer
2021-10-12T11:06:11-0400

Answer is false.

The mixed partial derivatives 2Zxyand2Zyx\frac{\partial²Z}{\partial{x}\partial{y}} and \frac{\partial²Z}{\partial{y}\partial{x}} are not necessarily equal. If they are continuous at a point then equal at that point. For example let us consider a piece wise defined function,

Z={xyx2y2x2+y2if (x,y)(0,0)0if (x,y)=(0,0)Z = \begin{cases} xy\frac{x²-y²}{x²+y²} &\text{if } (x,y)≠(0,0) \\ 0 &\text{if } (x,y)=(0,0) \end{cases}

=> Z={x3yxy3x2+y2if (x,y)(0,0)0if (x,y)=(0,0)Z = \begin{cases} \frac{x³y-xy³}{x²+y²} &\text{if } (x,y)≠(0,0) \\ 0 &\text{if } (x,y)=(0,0) \end{cases}

Here the symbols fx,fy,fxyandfyxf_{x} , f_{y}, f_{xy}and f_{yx} are used for partial and mixed partial derivatives


fx={(x2+y2)(y33x2y)(xy3x3y)2x(x2+y2)2if (x,y)(0,0)0if (x,y)=(0,0)f_{x}=\begin{cases} \frac{(x²+y²)(y³-3x²y)-(xy³-x³y)2x}{(x²+y²)²}&\text{if } (x,y)≠(0,0) \\ 0 &\text{if } (x,y)=(0,0) \end{cases}

fx={(3x2y3)x2+y22x(x3yxy3)(x2+y2)2)if (x,y)(0,0)0if (x,y)=(0,0)f_{x}=\begin{cases} \frac{(3x²-y³)}{x²+y²}-\frac{2x(x³y-xy³)}{(x²+y²)²})&\text{if } (x,y)≠(0,0) \\ 0 &\text{if } (x,y)=(0,0) \end{cases} Similarly

fy={(x33xy2)x2+y22y(x3yxy3)(x2+y2)2)if (x,y)(0,0)0if (x,y)=(0,0)f_{y}=\begin{cases} \frac{(x³-3xy²)}{x²+y²}-\frac{2y(x³y-xy³)}{(x²+y²)²})&\text{if } (x,y)≠(0,0) \\ 0 &\text{if } (x,y)=(0,0) \end{cases} So

fxy(0,0)=limh>0fx(0,h)fx(0,0)h=limh>0h3h2h=1f_{xy}(0,0)= lim_{h->0}\frac{f_{x}(0,h)-f_{x}(0,0)}{h}= lim_{h->0}\frac{-h³}{h²h}=-1

fyx(0,0)=limh>0fy(h,0)fy(0,0)h=limh>0h3h2h=1f_{yx}(0,0)= lim_{h->0}\frac{f_{y}(h,0)-f_{y}(0,0)}{h}= lim_{h->0}\frac{h³}{h²h}=1



(2Zxy)(0,0)=1and(2Zyx)(0,0)=1(\frac{\partial²Z}{\partial{x}\partial{y}})_{(0,0)} = -1 and (\frac{\partial²Z}{\partial{y}\partial{x}} )_{(0,0)} = 1

So 2Zxy2Zyx\frac{\partial²Z}{\partial{x}\partial{y}} ≠\frac{\partial²Z}{\partial{y}\partial{x}}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS