True or False:
The mixed partial derivatives "\\displaystyle{\\frac{\\partial^2 z}{\\partial y \\partial x}}" and "\\displaystyle{\\frac{\\partial^2 z}{\\partial x \\partial y}}" are equal
Answer is false.
The mixed partial derivatives "\\frac{\\partial\u00b2Z}{\\partial{x}\\partial{y}} and \\frac{\\partial\u00b2Z}{\\partial{y}\\partial{x}}" are not necessarily equal. If they are continuous at a point then equal at that point. For example let us consider a piece wise defined function,
"Z = \\begin{cases}\n xy\\frac{x\u00b2-y\u00b2}{x\u00b2+y\u00b2} &\\text{if } (x,y)\u2260(0,0) \\\\\n 0 &\\text{if } (x,y)=(0,0) \n\\end{cases}"
=> "Z = \\begin{cases}\n \\frac{x\u00b3y-xy\u00b3}{x\u00b2+y\u00b2} &\\text{if } (x,y)\u2260(0,0) \\\\\n 0 &\\text{if } (x,y)=(0,0) \n\\end{cases}"
Here the symbols "f_{x} , f_{y}, f_{xy}and f_{yx}" are used for partial and mixed partial derivatives
"f_{x}=\\begin{cases}\n \\frac{(x\u00b2+y\u00b2)(y\u00b3-3x\u00b2y)-(xy\u00b3-x\u00b3y)2x}{(x\u00b2+y\u00b2)\u00b2}&\\text{if } (x,y)\u2260(0,0) \\\\\n 0 &\\text{if } (x,y)=(0,0) \n\\end{cases}"
"f_{x}=\\begin{cases}\n \\frac{(3x\u00b2-y\u00b3)}{x\u00b2+y\u00b2}-\\frac{2x(x\u00b3y-xy\u00b3)}{(x\u00b2+y\u00b2)\u00b2})&\\text{if } (x,y)\u2260(0,0) \\\\\n 0 &\\text{if } (x,y)=(0,0) \n\\end{cases}" Similarly
"f_{y}=\\begin{cases}\n \\frac{(x\u00b3-3xy\u00b2)}{x\u00b2+y\u00b2}-\\frac{2y(x\u00b3y-xy\u00b3)}{(x\u00b2+y\u00b2)\u00b2})&\\text{if } (x,y)\u2260(0,0) \\\\\n 0 &\\text{if } (x,y)=(0,0) \n\\end{cases}" So
"f_{xy}(0,0)= lim_{h->0}\\frac{f_{x}(0,h)-f_{x}(0,0)}{h}= lim_{h->0}\\frac{-h\u00b3}{h\u00b2h}=-1"
"f_{yx}(0,0)= lim_{h->0}\\frac{f_{y}(h,0)-f_{y}(0,0)}{h}= lim_{h->0}\\frac{h\u00b3}{h\u00b2h}=1"
"(\\frac{\\partial\u00b2Z}{\\partial{x}\\partial{y}})_{(0,0)} = -1 and (\\frac{\\partial\u00b2Z}{\\partial{y}\\partial{x}} )_{(0,0)} = 1"
So "\\frac{\\partial\u00b2Z}{\\partial{x}\\partial{y}} \u2260\\frac{\\partial\u00b2Z}{\\partial{y}\\partial{x}}"
Comments
Leave a comment