Apply the Pythagorean theorem:
"x^2 + h^2 = L^2" where "h = 6 ft"
Now apply implicit differentiation:
"2x \\frac{dx}{dt} = 2L \\frac{dL}{dt}\\\\ \n\n \\Rightarrow \\frac{dx}{dt} = \\frac{L}{x} \\frac{dL}{dt}"
For "x = 20 \\ ft, L = \\sqrt{ ( 20^2 + 6^2 )}"
"\\Rightarrow\\frac{dx}{dt} = \\frac{\\sqrt{436}}{20} \\times (2) = 2.08 \\ ft\/sec"
For "x = 10 \\ ft, L = \\sqrt{ ( 10^2 + 6^2 )}"
"\\Rightarrow \\frac{dx}{dt} = \\frac{\\sqrt{136}}{10} \\times (2) = 2.33 \\ ft\/sec"
Result: Speed of boat increases as it gets closer to dock.
Comments
Leave a comment