Question #248621
∫ csc2
(2 − 3
1
Expert's answer
2021-10-11T05:58:53-0400

cosec2xdxcosec2x=sec2xtan2x    sec2xtan2xdx,Let u = tanxdu=sec2xdx    dx=dusec2xSubstituting the values above, we have1u2du=u1+c, Recall that u = tanxcosec2xdx=cotx+c\displaystyle \int\cosec^2xdx\\ \cosec^2x= \frac{\sec^2x}{\tan^2x}\\ \implies \int \frac{\sec^2x}{\tan^2x}dx,\qquad \text{Let u = tanx}\\ \therefore du = \sec^2xdx \implies dx = \frac{du}{sec^2x}\\ \text{Substituting the values above, we have}\\ \int \frac{1}{u^2}du = -u^{-1}+c, \text{ Recall that u = tanx}\\ \therefore \int cosec^2xdx = -cotx + c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS