"\\displaystyle\n\\int\\cosec^2xdx\\\\\n\\cosec^2x= \\frac{\\sec^2x}{\\tan^2x}\\\\\n\\implies \\int \\frac{\\sec^2x}{\\tan^2x}dx,\\qquad \\text{Let u = tanx}\\\\\n\\therefore du = \\sec^2xdx \\implies dx = \\frac{du}{sec^2x}\\\\\n\\text{Substituting the values above, we have}\\\\\n\\int \\frac{1}{u^2}du = -u^{-1}+c, \\text{ Recall that u = tanx}\\\\\n\\therefore \\int cosec^2xdx = -cotx + c"
Comments
Leave a comment