"\\displaystyle\n\\text{By pythagoras theorem }\\\\\n10^2 = x^2 + y^2\\\\\n\\text{Differentiating, we have }\\\\\n2x\\frac{dx}{dt}+2y\\frac{dy}{dt}=0\\\\\n\\implies \\frac{dy}{dt}=-\\frac{x}{y}\\frac{dx}{dt}\\\\\n\\text{where $y = \\sqrt{10^2-6^2}=8$}\\\\\n\\therefore \\frac{dy}{dt}= -\\frac{6}{8}\\cdot 3 = -\\frac{-9}{4}\\\\\n\\tan \\theta(t) = \\frac{x}{y}\\\\\n\\text{Differentiating, we have }\\\\\n\\sec^2 \\theta(t) \\theta'(t) = \\frac{y(t)x'(t)- x(t)y'(t)}{y^2}\\\\\n\\sec^2 \\theta(t) \\theta'(t) = \\frac{8\\cdot 3-6\\cdot -\\frac{9}{4}}{8^2}=0.586\\\\\n= \\theta'(t) = 0.586 \\cos^2(36.87) = 0.375"
Comments
Leave a comment