Question #248695

Show that 𝑈(−𝑓, 𝑝) = −𝐿(𝑓, 𝑝) and 𝐿(−𝑓, 𝑝) = −𝑈(𝑓, 𝑝)


1
Expert's answer
2021-10-12T13:40:17-0400

let p is partition on [a,b]

p={a=x0,x1,x2...xi1,xi,...xn=b}p=\{a=x_0, x_1, x_2...x_{i-1}, x_i,...x_n=b \}

is any partition on [a,b]


By definition lower and upper Riemman sum


L(f,p)=i=1nmiΔxiL(f,p)=\displaystyle\sum_{i=1}^nm_i\Delta x_i


U(f,p)=i=1nmiΔxiU(f,p)=\displaystyle\sum_{i=1}^nm_i \Delta x_i


where mi=int{f(x)x[xi1,xi]}m_i=int \{f(x)x\in[x_{i-1},x_i]\}


mi=sup{f(x):x[xi1,xi]}m_i=sup\{f(x):x\in[x_{i-1},x_i]\}


intrimum(f(x))=supremum f(x)intrimum(-f(x))=-supremum \space f(x)


mi=int{f(x)x[xi1,xi]}m_i=int \{-f(x)x\in[x_{i-1},x_i]\}

=sup{f(x):x[xi1,xi]}=-sup\{f(x):x\in[x_{i-1},x_i]\}

=mi=-m_i


L(f,p)=i=1nmiΔxiL(-f,p)=\displaystyle\sum_{i=1}^nm_i\Delta x_i


=i=1nmiΔxi=-\displaystyle\sum_{i=1}^nm_i\Delta x_i


𝐿(𝑓,𝑝)=𝑈(𝑓,𝑝).......proved𝐿(−𝑓, 𝑝) = −𝑈(𝑓, 𝑝).......proved


now,

mi=sup{f(x):x[xi1,xi]}m_i=sup\{-f(x):x\in[x_{i-1},x_i]\}


=int{f(x)x[xi1,xi]}=mi=-int \{f(x)x\in[x_{i-1},x_i]\}\\=-m_i


U(f,p)=i=1nmiΔxiU(-f,p)=\displaystyle\sum_{i=1}^nm_i\Delta x_i


=i=1nmiΔxi=-\displaystyle\sum_{i=1}^nm_i\Delta x_i


𝑈(𝑓,𝑝)=𝐿(𝑓,𝑝)..........proved𝑈(−𝑓, 𝑝) = −𝐿(𝑓, 𝑝)..........proved


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS