let p is partition on [a,b]
p={a=x0,x1,x2...xi−1,xi,...xn=b}
is any partition on [a,b]
By definition lower and upper Riemman sum
L(f,p)=i=1∑nmiΔxi
U(f,p)=i=1∑nmiΔxi
where mi=int{f(x)x∈[xi−1,xi]}
mi=sup{f(x):x∈[xi−1,xi]}
intrimum(−f(x))=−supremum f(x)
mi=int{−f(x)x∈[xi−1,xi]}
=−sup{f(x):x∈[xi−1,xi]}
=−mi
L(−f,p)=i=1∑nmiΔxi
=−i=1∑nmiΔxi
L(−f,p)=−U(f,p).......proved
now,
mi=sup{−f(x):x∈[xi−1,xi]}
=−int{f(x)x∈[xi−1,xi]}=−mi
U(−f,p)=i=1∑nmiΔxi
=−i=1∑nmiΔxi
U(−f,p)=−L(f,p)..........proved
Comments