Question #249725

Find the area of the surface that is generated by revolving the portion of the curve y = x

2


between x = 2 and x = 3 about the x-axis.


1
Expert's answer
2021-10-12T02:47:18-0400
S=232πy1+(y)2dxS=\displaystyle\int_{2}^{3}2\pi y\sqrt{1+(y')^2}dx

=232πx21+(2x)2dx=\displaystyle\int_{2}^{3}2\pi x^2\sqrt{1+(2x)^2}dx

x21+(2x)2dx=\int x^2\sqrt{1+(2x)^2}dx=

x=12tanθ,π2<θ<π2x=\dfrac{1}{2}\tan \theta, -\dfrac{\pi}{2}<\theta <\dfrac{\pi}{2}

dx=12cos2θdθdx=\dfrac{1}{2\cos^2\theta}d\theta

1+(2x)2=1cosθ\sqrt{1+(2x)^2}=\dfrac{1}{\cos\theta}

x21+(2x)2dx=2(x2)1+(2x)2dx\int x^2\sqrt{1+(2x)^2}dx=2\int (x^2)\sqrt{1+(2x)^2}dx

=14tan2θ(1cosθ)(12cos2θ)dθ=\int \dfrac{1}{4}\tan^2 \theta(\dfrac{1}{\cos\theta})(\dfrac{1}{2\cos^2\theta})d\theta

=18(1cos3θ1cos5θ)dθ=\dfrac{1}{8}\int (\dfrac{1}{\cos^3\theta}-\dfrac{1}{\cos^5\theta})d\theta

=18(ln(tanθ+secθ)+tanθsecθ(12sec2θ))+C=\dfrac{1}{8}(\ln(|\tan\theta+\sec \theta|)+\tan\theta\sec\theta(1-2\sec^2\theta))+C

=1+4x2(16x3+2x)ln(1+4x2+2x)64+C=\dfrac{\sqrt{1+4x^2}(16x^3+2x)-\ln(|\sqrt{1+4x^2}+2x|)}{64}+C

S=π32(43837ln(37+6)S=\dfrac{\pi}{32}\bigg(438\sqrt{37}-\ln(\sqrt{37}+6)

13217+ln(17+4)) square units-132\sqrt{17}+\ln(\sqrt{17}+4)\bigg)\ square\ units


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS