Question #249727

Find the centroid of the region R enclosed between the curves y = x

2

+2 and y = x + 8.


1
Expert's answer
2021-10-12T10:24:35-0400

x=1Ax(f(x)g(x))dx\overline{x}=\frac{1}{A}\int x(f(x)-g(x))dx


y=1Af(x)+g(x)2(f(x)g(x))dx\overline{y}=\frac{1}{A}\int \frac{f(x)+g(x)}{2}(f(x)-g(x))dx


A is area of region


intersections:

x2+2=x+8x^2+2=x+8

x2x6=0x^2-x-6=0

x=1±252x=\frac{1\pm \sqrt{25}}{2}

x1=2,x2=3x_1=-2,x_2=3


A=23(f(x)g(x))dx=23(x+8x22)dx=A=\displaystyle{\int^3_{-2}}(f(x)-g(x))dx=\displaystyle{\int^3_{-2}}(x+8-x^2-2)dx=



=(x3/3+x2/2+6x)23=9+9/2+188/32+12=125/6=(-x^3/3+x^2/2+6x)|^3_{-2}=-9+9/2+18-8/3-2+12=125/6


y=62523x(x+8x22)dx=\overline{y}=\frac{6}{25}\displaystyle{\int^3_{-2}}x(x+8-x^2-2)dx=


=625(x4/4+x3/3+3x2)23=625(81/4+9+27+4+8/312)==\frac{6}{25}(-x^4/4+x^3/3+3x^2)|^3_{-2}=\frac{6}{25}(-81/4+9+27+4+8/3-12)=


=62512512=52=\frac{6}{25}\cdot\frac{125}{12}=\frac{5}{2}


x=62523x2+x+102(xx2+6)dx=\overline{x}=\frac{6}{25}\displaystyle{\int^3_{-2}}\frac{x^2+x+10}{2}(x-x^2+6)dx=


=650(x4/4+x3/3+5x2x5/5x4/410x3/3+2x3+3x2+60x)23==\frac{6}{50}(x^4/4+x^3/3+5x^2-x^5/5-x^4/4-10x^3/3+2x^3+3x^2+60x)|^3_{-2}=


=650(x3+8x2x5/5+60x)23==\frac{6}{50}(-x^3+8x^2-x^5/5+60x)|^3_{-2}=


650(27+72243/5+18083232/5+120)=650100=12\frac{6}{50}(-27+72-243/5+180-8-32-32/5+120)=\frac{6}{50}\cdot100=12


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS