x=A1∫x(f(x)−g(x))dx
y=A1∫2f(x)+g(x)(f(x)−g(x))dx
A is area of region
intersections:
x2+2=x+8
x2−x−6=0
x=21±25
x1=−2,x2=3
A=∫−23(f(x)−g(x))dx=∫−23(x+8−x2−2)dx=
=(−x3/3+x2/2+6x)∣−23=−9+9/2+18−8/3−2+12=125/6
y=256∫−23x(x+8−x2−2)dx=
=256(−x4/4+x3/3+3x2)∣−23=256(−81/4+9+27+4+8/3−12)=
=256⋅12125=25
x=256∫−232x2+x+10(x−x2+6)dx=
=506(x4/4+x3/3+5x2−x5/5−x4/4−10x3/3+2x3+3x2+60x)∣−23=
=506(−x3+8x2−x5/5+60x)∣−23=
506(−27+72−243/5+180−8−32−32/5+120)=506⋅100=12
Comments