The area of the triangle formed by the coordinate axes and a tangent to the curve xy=a2 at the point (x1,y1) is
dxdyx1y1y−y1x=0;y−y1x=0;yy=0;+y1xArea =x2−a2=a2=x12−a2(x−x1)=x12+a2(0−x1)=y1x12+a2=x12+a2(x−x1)=x1+x2x12y1=21(x1+x2x12y1)(y1+x1a2)=21(x1y1+a2+a2+a2(x1y1)2+x1y1)=21(a2+a2+a2a4+a2)=24a2=2a2
Comments