Answer to Question #249910 in Calculus for Phenominal1

Question #249910
Find the area of the triangle formed from the coordinate axes and the tangent line to the curve
1
Expert's answer
2021-10-15T04:43:48-0400

The area of the triangle formed by the coordinate axes and a tangent to the curve "xy=a^ 2" at the point "(x_1,y_1)" is


"\\begin{aligned}\n\\dfrac{dy}{dx} &= \\dfrac{\u2212a ^2}{x^2}\\\\\n \\\\\nx _1y _1&=a ^2\\\\ \u200b\ny\u2212y _1&\u200b= \\dfrac{-a\u00b2}{x_1^2}(x\u2212x _1)\\\\\n\u200b\\\\\n\u200b\nx=0;y\u2212y _1&\u200b= \\dfrac{+a\u00b2}{x_1^2}(0\u2212x _1)\\\\\n\u200b\\\\\n\nx=0;y&=y _1\\dfrac{+a\u00b2}{x_1^2}\\\\\n\u200b\\\\\ny=0;+y _1\u200b\u200b&= \\dfrac{+a\u00b2}{x_1^2}(x\u2212x _1)\\\\\n\u200b\\\\\nx&=x _1+ \\dfrac{x_1^2y_1}{x\u00b2}\\\\\n\\\\\n\\text{Area }&=\\dfrac12 (x_1 +\\dfrac{x_1^2y_1}{x\u00b2})\n\u200b(y_1+ \\dfrac{a ^2}{x _1})\\\\\n\\\\\n&= \\dfrac12(x _1\u200by _1+a ^2\u200b+ a ^2+\\dfrac{(x _1y _1\u200b) ^2}{a^2}+x _1\u200by _1\u200b)\\\\\n\\\\\n&= \\dfrac12\u200b(a ^2\u200b+a ^2+ \\dfrac{a^4}{a ^2}+a^2)\\\\\n\u200b&= \\dfrac{4a\u00b2}{2}\\\\\\\\\n\u200b&=2a^2\n\\end{aligned}"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS