Question #249910
Find the area of the triangle formed from the coordinate axes and the tangent line to the curve
1
Expert's answer
2021-10-15T04:43:48-0400

The area of the triangle formed by the coordinate axes and a tangent to the curve xy=a2xy=a^ 2 at the point (x1,y1)(x_1,y_1) is


dydx=a2x2x1y1=a2yy1=a2x12(xx1)x=0;yy1=+a2x12(0x1)x=0;y=y1+a2x12y=0;+y1​​=+a2x12(xx1)x=x1+x12y1x2Area =12(x1+x12y1x2)(y1+a2x1)=12(x1y1+a2+a2+(x1y1)2a2+x1y1)=12(a2+a2+a4a2+a2)=4a22=2a2\begin{aligned} \dfrac{dy}{dx} &= \dfrac{−a ^2}{x^2}\\ \\ x _1y _1&=a ^2\\ ​ y−y _1&​= \dfrac{-a²}{x_1^2}(x−x _1)\\ ​\\ ​ x=0;y−y _1&​= \dfrac{+a²}{x_1^2}(0−x _1)\\ ​\\ x=0;y&=y _1\dfrac{+a²}{x_1^2}\\ ​\\ y=0;+y _1​​&= \dfrac{+a²}{x_1^2}(x−x _1)\\ ​\\ x&=x _1+ \dfrac{x_1^2y_1}{x²}\\ \\ \text{Area }&=\dfrac12 (x_1 +\dfrac{x_1^2y_1}{x²}) ​(y_1+ \dfrac{a ^2}{x _1})\\ \\ &= \dfrac12(x _1​y _1+a ^2​+ a ^2+\dfrac{(x _1y _1​) ^2}{a^2}+x _1​y _1​)\\ \\ &= \dfrac12​(a ^2​+a ^2+ \dfrac{a^4}{a ^2}+a^2)\\ ​&= \dfrac{4a²}{2}\\\\ ​&=2a^2 \end{aligned}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS