Question #247892

Given the function, f(x,y) = x^3 y + 12x^2 - 8y Find all critical points and classify each as a local maximum, local minimum, or neither.


1
Expert's answer
2021-10-12T04:41:08-0400

Given function is f(x,y)=x3y+12x28y=0f(x,y)=x^3y+12x^2-8y=0

Differentiating the function w.r.t. (x),(x), we get:

3x2y+x3dydx+24x8dydx=0dydx=24x+3x2y8x33x^2y+x^3\frac{dy}{dx}+24x-8\frac{dy}{dx}=0\\ \Rightarrow \frac{dy}{dx}=\frac{24x+3x^2y}{8-x^3}

For critical points, put dydx=0,\frac{dy}{dx}=0, we get:

24x+3x2y8x3=024x+3x2y=03x(8+xy)=0\frac{24x+3x^2y}{8-x^3}=0\\ \Rightarrow 24x+3x^2y=0\\ \Rightarrow 3x(8+xy)=0

x=0 or xy=8\therefore x=0 \ or \ xy=-8


Case 1: If x=0x=0 , then:

f(x,y)=8y=0y=0f(x,y)=-8y=0\\ \Rightarrow y=0

Case 2: If xy=8xy=-8 , then:

f(x,y)=8x2+12x28y=04x28y=0x22=yf(x,y)=-8x^2+12x^2-8y=0\\ \Rightarrow 4x^2-8y=0\\ \Rightarrow \frac{x^2}{2}=y

So, the given function can be written as:

x3(x22)+12x24x2=0x52+8x2=0x2(x32+8)=0x=0 or x3=16x=0 or x=(16)13x^3(\frac{x^2}{2})+12x^2-4x^2=0\\ \Rightarrow \frac{x^5}{2}+8x^2=0\\ \Rightarrow x^2(\frac{x^3}{2}+8)=0\\ \Rightarrow x=0 \ or\ x^3=-16\\ \Rightarrow x=0 \ or\ x=-(16)^{\frac{1}{3}}

y=0 or y=(16)232\therefore y=0 \ or\ y=\frac{(16)^{\frac{2}{3}}}{2}

So, from both cases, we obtain the same point: (0,0)(0,0) and ((16)13,(16)232)(-(16)^{\frac{1}{3}}, \frac{(16)^{\frac{2}{3}}}{2})


Now, calculating double derivative, we get:

6xy+3x2dydx+3x2dydx+x3d2ydx2+248d2ydx2=0d2ydx2=6xy+6x2dydx+248x36xy+3x^2\frac{dy}{dx}+3x^2\frac{dy}{dx}+x^3\frac{d^2y}{dx^2}+24-8\frac{d^2y}{dx^2}=0\\ \Rightarrow \frac{d^2y}{dx^2}=\frac{6xy+6x^2\frac{dy}{dx}+24}{8-x^3}

Now, calculating value of double derivative at (0,0)(0,0) , we get:

(d2ydx2)(0,0)=248=3(\frac{d^2y}{dx^2})_{(0,0)}=\frac{24}{8}=3 which is positive. Hence, the point is local minimum.


Now, calculating value of double derivative at ((16)13,(16)232)(-(16)^{\frac{1}{3}}, \frac{(16)^{\frac{2}{3}}}{2}), we get:

(d2ydx2)((16)13,(16)232)=48+0+248+16=1(\frac{d^2y}{dx^2})_{(-(16)^{\frac{1}{3}}, \frac{(16)^{\frac{2}{3}}}{2})}=\frac{-48+0+24}{8+16}=-1 which is negative. Hence, the point is local maximum.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS