Given function is f(x,y)=x3y+12x2−8y=0
Differentiating the function w.r.t. (x), we get:
3x2y+x3dxdy+24x−8dxdy=0⇒dxdy=8−x324x+3x2y
For critical points, put dxdy=0, we get:
8−x324x+3x2y=0⇒24x+3x2y=0⇒3x(8+xy)=0
∴x=0 or xy=−8
Case 1: If x=0 , then:
f(x,y)=−8y=0⇒y=0
Case 2: If xy=−8 , then:
f(x,y)=−8x2+12x2−8y=0⇒4x2−8y=0⇒2x2=y
So, the given function can be written as:
x3(2x2)+12x2−4x2=0⇒2x5+8x2=0⇒x2(2x3+8)=0⇒x=0 or x3=−16⇒x=0 or x=−(16)31
∴y=0 or y=2(16)32
So, from both cases, we obtain the same point: (0,0) and (−(16)31,2(16)32)
Now, calculating double derivative, we get:
6xy+3x2dxdy+3x2dxdy+x3dx2d2y+24−8dx2d2y=0⇒dx2d2y=8−x36xy+6x2dxdy+24
Now, calculating value of double derivative at (0,0) , we get:
(dx2d2y)(0,0)=824=3 which is positive. Hence, the point is local minimum.
Now, calculating value of double derivative at (−(16)31,2(16)32), we get:
(dx2d2y)(−(16)31,2(16)32)=8+16−48+0+24=−1 which is negative. Hence, the point is local maximum.
Comments