a)
z = x 2 + y 2 z=\sqrt{x^2+y^2} z = x 2 + y 2
XY-projection:
The XY-projection the sketch is the shaded region
b)
x = z c o s φ x=zcos\varphi x = zcos φ
y = z s i n φ y=zsin\varphi y = zs in φ
z = z z=z z = z
r ( z , φ ) = z c o s φ i + z s i n φ j + z k r(z,\varphi)=zcos\varphi i+zsin\varphi j+zk r ( z , φ ) = zcos φ i + zs in φ j + z k
r z = c o s φ i + s i n φ j + k r_z=cos\varphi i+sin\varphi j+k r z = cos φ i + s in φ j + k
r φ = − z s i n φ i + z c o s φ j r_{\varphi}=-zsin\varphi i+zcos\varphi j r φ = − zs in φ i + zcos φ j
r z × r φ = ∣ i j k c o s φ s i n φ 1 − z s i n φ z c o s φ 0 ∣ = − z c o s φ i − z s i n φ j + z k r_z\times r_{\varphi}=\begin{vmatrix}
i & j&k \\
cos\varphi & sin\varphi &1\\
-zsin\varphi &zcos\varphi &0
\end{vmatrix}=-zcos\varphi i -zsin\varphi j+zk r z × r φ = ∣ ∣ i cos φ − zs in φ j s in φ zcos φ k 1 0 ∣ ∣ = − zcos φ i − zs in φ j + z k
∣ r z × r φ ∣ = z 2 |r_z\times r_{\varphi}|=z\sqrt 2 ∣ r z × r φ ∣ = z 2
surface area:
S = ∬ ∣ r z × r φ ∣ d A = 2 ∫ 0 2 π ∫ 1 3 z d z d φ = 8 / 2 ∫ 0 2 π d φ = 8 π 2 S=\iint |r_z\times r_{\varphi}|dA=\sqrt 2\int ^{2\pi}_0\int^3_1 zdzd\varphi =8/\sqrt 2\int ^{2\pi}_0 d\varphi=8\pi\sqrt 2 S = ∬ ∣ r z × r φ ∣ d A = 2 ∫ 0 2 π ∫ 1 3 z d z d φ = 8/ 2 ∫ 0 2 π d φ = 8 π 2
Comments
Leave a comment