Answer to Question #246092 in Calculus for Anuj

Question #246092

Consider the surface S = n (x, y, z) | z = p x 2 + y 2 and 1 ≤ z ≤ 3 o .(a) Sketch the surface S in R 3 . Also show its XY-projection on your sketch. (2) (b) Evaluate the area of S, using a surface integral


1
Expert's answer
2022-01-24T15:54:47-0500

a)

z=x2+y2z=\sqrt{x^2+y^2}




XY-projection:




The XY-projection the sketch is the shaded region


b)

x=zcosφx=zcos\varphi

y=zsinφy=zsin\varphi

z=zz=z

r(z,φ)=zcosφi+zsinφj+zkr(z,\varphi)=zcos\varphi i+zsin\varphi j+zk

rz=cosφi+sinφj+kr_z=cos\varphi i+sin\varphi j+k

rφ=zsinφi+zcosφjr_{\varphi}=-zsin\varphi i+zcos\varphi j

rz×rφ=ijkcosφsinφ1zsinφzcosφ0=zcosφizsinφj+zkr_z\times r_{\varphi}=\begin{vmatrix} i & j&k \\ cos\varphi & sin\varphi &1\\ -zsin\varphi &zcos\varphi &0 \end{vmatrix}=-zcos\varphi i -zsin\varphi j+zk


rz×rφ=z2|r_z\times r_{\varphi}|=z\sqrt 2


surface area:

S=rz×rφdA=202π13zdzdφ=8/202πdφ=8π2S=\iint |r_z\times r_{\varphi}|dA=\sqrt 2\int ^{2\pi}_0\int^3_1 zdzd\varphi =8/\sqrt 2\int ^{2\pi}_0 d\varphi=8\pi\sqrt 2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment