Consider the surface S = n (x, y, z) | z = p x 2 + y 2 and 1 ≤ z ≤ 3 o .(a) Sketch the surface S in R 3 . Also show its XY-projection on your sketch. (2) (b) Evaluate the area of S, using a surface integral
a)
"z=\\sqrt{x^2+y^2}"
XY-projection:
The XY-projection the sketch is the shaded region
b)
"x=zcos\\varphi"
"y=zsin\\varphi"
"z=z"
"r(z,\\varphi)=zcos\\varphi i+zsin\\varphi j+zk"
"r_z=cos\\varphi i+sin\\varphi j+k"
"r_{\\varphi}=-zsin\\varphi i+zcos\\varphi j"
"r_z\\times r_{\\varphi}=\\begin{vmatrix}\n i & j&k \\\\\n cos\\varphi & sin\\varphi &1\\\\\n-zsin\\varphi &zcos\\varphi &0\n\\end{vmatrix}=-zcos\\varphi i -zsin\\varphi j+zk"
"|r_z\\times r_{\\varphi}|=z\\sqrt 2"
surface area:
"S=\\iint |r_z\\times r_{\\varphi}|dA=\\sqrt 2\\int ^{2\\pi}_0\\int^3_1 zdzd\\varphi =8\/\\sqrt 2\\int ^{2\\pi}_0 d\\varphi=8\\pi\\sqrt 2"
Comments
Leave a comment