Question No#08: The first two limits are both equal to zero:
x→±∞limx2−23x+7=x→±∞limx2−23x+7(x21x21)==x→±∞lim1−x22x3+x27=1−00+0=10=0
x→±∞limx610x5+x4+31=x→±∞limx610x5+x4+31(x61x61)=x→±∞lim1x10+x21+x631=10+0+0=0
Question No#10
Let ƒ(x) = 𝑥1/(1−x) . Make tables of values of ƒ at values of x that approach x = 1 from above and below.
Does ƒ(x) appear to have a limit as x approaches 1? Yes, there is a limit.
If so, what is it? The limit for f(x)=1−xx can be expressed as:x→1+limf(x)=+∞ andx→1−limf(x)=−∞
Question No#11
Find the limits using θ→0limθsinθ=1, after substitution we find
a) x→0lim6x2(cotx)(csc2x)=x→0lim6x2(sinxcosx)(2sinxcosx1)=x→0lim(sin2x3x2)=3(x→0lim(sinxx))2∴x→0lim6x2(cotx)(csc2x)=3(12)=3
𝑏) y→0limycot4y(sin3y)(cot3y)=y→0limycotysin3y=y→0limysinysin3ycosy=y→0limysin2ycosy=y→0limysiny×y→0limsinycosy=(1)(0)=0
Reference:
- Thomas, G. B., & Finney, R. L. (1961). Calculus. Addison-Wesley Publishing Company.
Comments