Consider the function y=\ ln(1+x).
Which of the following is the Maclaurin series expansion of the first three terms?
We should obtain the first three terms of the series f(x)=∑n=0+∞f(n)(0)n!xn{\displaystyle f(x)=\sum _{n=0}^{+\infty }{\frac {f^{(n)}(0)}{n!}}x^{n}}f(x)=n=0∑+∞n!f(n)(0)xn
f(0)(0)=ln(1+0)=0,f(1)(0)=11+0=1,f(2)(0)=−1(1+0)2=−1,f(3)(0)=2(1+0)3=2f^{(0)}(0) = \ln (1+0) = 0, \\ f^{(1)}(0) = \frac{1}{1+0} = 1, \\ f^{(2)}(0) = -\frac{1}{(1+0)^2} = -1, \\ f^{(3)}(0) = \frac{2}{(1+0)^3} = 2f(0)(0)=ln(1+0)=0,f(1)(0)=1+01=1,f(2)(0)=−(1+0)21=−1,f(3)(0)=(1+0)32=2
ln(1+x)=0+x−12x2+26x3=x−12x2+13x3.\ln(1+x) = 0 + x - \frac{1}{2}x^2 + \frac{2}{6}x^3 = x - \frac{1}{2}x^2 + \frac{1}{3}x^3.ln(1+x)=0+x−21x2+62x3=x−21x2+31x3. The correct answer is 3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments