Question #239406

Consider the function y=\ ln(1+x).

Which of the following is the Maclaurin series expansion of the first three terms?


  1. xx22+x36x-\frac{x^2}{2}+\frac{x^3}{6}
  2. xx23+x32x-\frac{x^2}{3}+\frac{x^3}{2}
  3. xx22+x33x-\frac{x^2}{2}+\frac{x^3}{3}​
  4. x+x22x33x+\frac{x^2}{2}-\frac{x^3}{3}
1
Expert's answer
2021-09-23T16:54:25-0400

We should obtain the first three terms of the series f(x)=n=0+f(n)(0)n!xn{\displaystyle f(x)=\sum _{n=0}^{+\infty }{\frac {f^{(n)}(0)}{n!}}x^{n}}

f(0)(0)=ln(1+0)=0,f(1)(0)=11+0=1,f(2)(0)=1(1+0)2=1,f(3)(0)=2(1+0)3=2f^{(0)}(0) = \ln (1+0) = 0, \\ f^{(1)}(0) = \frac{1}{1+0} = 1, \\ f^{(2)}(0) = -\frac{1}{(1+0)^2} = -1, \\ f^{(3)}(0) = \frac{2}{(1+0)^3} = 2


ln(1+x)=0+x12x2+26x3=x12x2+13x3.\ln(1+x) = 0 + x - \frac{1}{2}x^2 + \frac{2}{6}x^3 = x - \frac{1}{2}x^2 + \frac{1}{3}x^3. The correct answer is 3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS