Question #239405

Consider the following equation I=01sin(x2)dxI=\displaystyle{\int_{0}^{1}\sin{(x^2)}dx}

Find the integral  11sin(x2)dx\displaystyle{\int_{-1}^{1}\sin{(x^2)}dx} in terms of II


1
Expert's answer
2021-09-23T00:37:12-0400

sinx=(1)nx2n+1(2n+1)!\sin x = \sum \dfrac{(-1)^n x^{2n+1}}{(2n+1)!}


then    sin(x2)=(1)nx4n+2(2n+1)!\text{then} \; \; \sin (x^2) = \sum \dfrac{(-1)^n x^{4n+2}}{(2n+1)!}


sin(x2)=(1)nx4n+2(2n+1)!=(1)nx4n+3(2n+1)!(4n+3)+K\int \sin (x^2) = \int \sum \dfrac{(-1)^n x^{4n+2}}{(2n+1)!} = \sum \dfrac{(-1)^n x^{4n+3}}{(2n+1)!(4n+3)} + K


01sinx2 dx\therefore\int_0^1\sin x^2~dx


=[n=0(1)nx4n+3(2n+1)!(4n+3)]01=\left[\sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{4n+3}}{(2n+1)!(4n+3)}\right]_0^1


=n=0(1)n(2n+1)!(4n+3)=I=\sum\limits_{n=0}^\infty\dfrac{(-1)^n}{(2n+1)!(4n+3)}=I


11sinx2 dx\int_{-1}^1\sin x^2~dx


=[n=0(1)nx4n+3(2n+1)!(4n+3)]11=\left[\sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{4n+3}}{(2n+1)!(4n+3)}\right]_{-1}^1


=n=0(2(1)n(2n+1)!(4n+3))=2I=\sum\limits_{n=0}^\infty(2\dfrac{(-1)^n}{(2n+1)!(4n+3)})= 2I

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS