Consider the following equation "I=\\displaystyle{\\int_{0}^{1}\\sin{(x^2)}dx}"
Find the integral "\\displaystyle{\\int_{-1}^{1}\\sin{(x^2)}dx}" in terms of "I"
"\\sin x = \\sum \\dfrac{(-1)^n x^{2n+1}}{(2n+1)!}"
"\\text{then} \\; \\; \\sin (x^2) = \\sum \\dfrac{(-1)^n x^{4n+2}}{(2n+1)!}"
"\\int \\sin (x^2) = \\int \\sum \\dfrac{(-1)^n x^{4n+2}}{(2n+1)!} = \\sum \\dfrac{(-1)^n x^{4n+3}}{(2n+1)!(4n+3)} + K"
"\\therefore\\int_0^1\\sin x^2~dx"
"=\\left[\\sum\\limits_{n=0}^\\infty\\dfrac{(-1)^nx^{4n+3}}{(2n+1)!(4n+3)}\\right]_0^1"
"=\\sum\\limits_{n=0}^\\infty\\dfrac{(-1)^n}{(2n+1)!(4n+3)}=I"
"\\int_{-1}^1\\sin x^2~dx"
"=\\left[\\sum\\limits_{n=0}^\\infty\\dfrac{(-1)^nx^{4n+3}}{(2n+1)!(4n+3)}\\right]_{-1}^1"
"=\\sum\\limits_{n=0}^\\infty(2\\dfrac{(-1)^n}{(2n+1)!(4n+3)})= 2I"
Comments
Leave a comment