sinx=∑(2n+1)!(−1)nx2n+1
thensin(x2)=∑(2n+1)!(−1)nx4n+2
∫sin(x2)=∫∑(2n+1)!(−1)nx4n+2=∑(2n+1)!(4n+3)(−1)nx4n+3+K
∴∫01sinx2 dx
=[n=0∑∞(2n+1)!(4n+3)(−1)nx4n+3]01
=n=0∑∞(2n+1)!(4n+3)(−1)n=I
∫−11sinx2 dx
=[n=0∑∞(2n+1)!(4n+3)(−1)nx4n+3]−11
=n=0∑∞(2(2n+1)!(4n+3)(−1)n)=2I
Comments