Evaluate the limit limx→0ex−x−1x2\displaystyle{\lim\limits_{x \to 0} \dfrac{e^{x}-x-1}{x^2}}x→0limx2ex−x−1 by using l'Hopital's Rule twice.
limx→0ex−x−1x2\lim\limits_{x\rightarrow0} \frac{e^x-x-1}{x^2}x→0limx2ex−x−1
This is a 00\frac{0}{0}00 form, so applying L'Hopital's rule here, we get:
=limx→0ex−12x=\lim\limits_{x\rightarrow0} \frac{e^x-1}{2x}=x→0lim2xex−1
Again, this is a 00\frac{0}{0}00 form, so applying L'Hopital's rule here, we get:
=limx→0ex2=\lim\limits_{x\rightarrow0} \frac{e^x}{2}=x→0lim2ex
=e02=12=\frac{e^0}{2}\\ =\frac{1}{2}=2e0=21
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments