Use chain rule to find the derivative and express the final answer in terms of x in radical form of
y= u1/2 and u= x1/2
Let us use the chain rule "y'_x=y'_uu'_x:"
"y'_x=\\frac{1}2u^{-\\frac{1}2}\\frac{1}2x^{-\\frac{1}2}=\n\\frac{1}4(x^{\\frac{1}2})^{-\\frac{1}2}x^{-\\frac{1}2}"
"=\\frac{1}4x^{-\\frac{1}4}x^{-\\frac{1}2}\n=\\frac{1}4x^{-\\frac{3}4}=\\frac{1}{4\\sqrt[4]{x^3}}."
Comments
Leave a comment