Question #239089

Question 19

Identify the domain of the following functions.

a) 𝑓(π‘₯) = sinβˆ’1(3π‘₯ βˆ’ 1)

b) 𝑓(π‘₯) = [log(sinβˆ’1(√π‘₯2 + 3π‘₯ + 2))]

c)π‘˜(π‘₯)= 1 √(π‘₯βˆ’2)2

d) 𝑗(π‘₯)= 1 π‘₯βˆ’βˆš(π‘₯+2)

e) 𝑓(π‘₯)=ln|π‘₯+3|βˆ’5


 

  


1
Expert's answer
2021-09-21T05:02:10-0400

(a)𝑓(π‘₯)=sinβˆ’1(3π‘₯βˆ’1)βˆ’1<=3xβˆ’1<=1β‡’0<=3x<=2β‡’0<=x<=23∴x∈[0,23](a) 𝑓(π‘₯) = sin^{-1}(3π‘₯ βˆ’ 1)\\ -1<=3x-1<=1\\ \Rightarrow 0<=3x<=2\\ \Rightarrow 0<=x<=\frac{2}{3}\\ \therefore x\in [0,\frac{2}{3}]


(b)𝑓(π‘₯)=[log(sinβˆ’1(π‘₯2+3π‘₯+2))]sinβ‘βˆ’1x2+3x+2>0β‡’x2+3x+2>0 true for all x.Also,βˆ’1≀x2+3x+2≀1β‡’0<x2+3x+2<=1Here x2+3x+2>0 or  x2+3x+2≀1β‡’x2+3x+2>0 or  x2+3x+1≀0(x+1)(x+2)>0 or βˆ’3βˆ’52≀xβ‰€βˆ’3+52Final answer:[βˆ’3βˆ’52,βˆ’2)βˆͺ(βˆ’1,βˆ’3+52](b) 𝑓(π‘₯) = [log(sin^{βˆ’1}(\sqrt{π‘₯^2 + 3π‘₯ + 2}))]\\ \sin ^{-1} \sqrt{x^{2}+3 x+2}>0 \\ \Rightarrow \sqrt{x^{2}+3 x+2}>0 \ true \ for \ all \ \mathrm{x} . \\ Also, -1 \leq \sqrt{x^{2}+3 x+2} \leq 1\\ \Rightarrow 0<\sqrt{x^{2}+3 x+2}<=1\\ Here \ x^{2}+3 x+2>0 \quad \text { or } \ x^{2}+3 x+2 \leq 1\\ \Rightarrow x^{2}+3 x+2>0 \quad \text { or } \ x^{2}+3 x+1\leq 0\\ (x+1)(x+2)>0 \ or\ \frac{-3-\sqrt{5}}{2} \leq x \leq \frac{-3+\sqrt{5}}{2} \\ Final \ answer : {\left[\frac{-3-\sqrt{5}}{2},-2\right) \cup\left(-1, \frac{-3+\sqrt{5}}{2}\right]}


(c) π‘˜(π‘₯)=1(π‘₯βˆ’2)2Here, xβˆ’2β‰ 0β‡’xβ‰ 2So,x∈Rβˆ’2(c) \ π‘˜(π‘₯)= \frac{1}{ \sqrt{(π‘₯βˆ’2)^2}}\\ Here, \ x-2\neq0\\ \Rightarrow x\neq 2 \\ So, x\in R-{{2}}


(d)𝑗(π‘₯)=1π‘₯βˆ’(π‘₯+2)(d) 𝑗(π‘₯)= \frac{1}{ π‘₯βˆ’\sqrt{(π‘₯+2)}}

Here, π‘₯βˆ’(π‘₯+2)β‰ 0π‘₯βˆ’\sqrt{(π‘₯+2)}\neq0\\

β‡’xβ‰ (π‘₯+2)β‡’x2β‰ x+2β‡’x2βˆ’xβˆ’2β‰ 0β‡’(xβˆ’2)(x+1)β‰ 0β‡’xβ‰ βˆ’1,2\Rightarrow x\neq\sqrt{(π‘₯+2)}\\ \Rightarrow x^2\neq x+2\\ \Rightarrow x^2-x-2\neq0\\ \Rightarrow (x-2)(x+1)\neq 0\\ \Rightarrow x\neq -1,2\\

Also, 

x+2>=0x>=βˆ’2x+2>=0\\ x>=-2


∴x∈[βˆ’2,βˆ’1)βˆͺ(βˆ’1,2)βˆͺ(2,∞)\therefore x\in [-2,-1)\cup(-1,2)\cup(2,\infty)


(e) π‘“(π‘₯)=ln∣π‘₯+3βˆ£βˆ’5Here,∣π‘₯+3∣>0(e) \ 𝑓(π‘₯)=ln|π‘₯+3|βˆ’5\\ Here, |π‘₯+3|>0 which is always true.

So, x∈Rx\in R



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS