( a ) π ( π₯ ) = s i n β 1 ( 3 π₯ β 1 ) β 1 < = 3 x β 1 < = 1 β 0 < = 3 x < = 2 β 0 < = x < = 2 3 β΄ x β [ 0 , 2 3 ] (a) π(π₯) = sin^{-1}(3π₯ β 1)\\
-1<=3x-1<=1\\
\Rightarrow 0<=3x<=2\\
\Rightarrow 0<=x<=\frac{2}{3}\\
\therefore x\in [0,\frac{2}{3}] ( a ) f ( x ) = s i n β 1 ( 3 x β 1 ) β 1 <= 3 x β 1 <= 1 β 0 <= 3 x <= 2 β 0 <= x <= 3 2 β β΄ x β [ 0 , 3 2 β ]
( b ) π ( π₯ ) = [ l o g ( s i n β 1 ( π₯ 2 + 3 π₯ + 2 ) ) ] sin β‘ β 1 x 2 + 3 x + 2 > 0 β x 2 + 3 x + 2 > 0 t r u e f o r a l l x . A l s o , β 1 β€ x 2 + 3 x + 2 β€ 1 β 0 < x 2 + 3 x + 2 < = 1 H e r e x 2 + 3 x + 2 > 0 or x 2 + 3 x + 2 β€ 1 β x 2 + 3 x + 2 > 0 or x 2 + 3 x + 1 β€ 0 ( x + 1 ) ( x + 2 ) > 0 o r β 3 β 5 2 β€ x β€ β 3 + 5 2 F i n a l a n s w e r : [ β 3 β 5 2 , β 2 ) βͺ ( β 1 , β 3 + 5 2 ] (b) π(π₯) = [log(sin^{β1}(\sqrt{π₯^2 + 3π₯ + 2}))]\\
\sin ^{-1} \sqrt{x^{2}+3 x+2}>0 \\
\Rightarrow \sqrt{x^{2}+3 x+2}>0 \ true \ for \ all \ \mathrm{x} . \\
Also,
-1 \leq \sqrt{x^{2}+3 x+2} \leq 1\\
\Rightarrow 0<\sqrt{x^{2}+3 x+2}<=1\\
Here \
x^{2}+3 x+2>0 \quad \text { or } \
x^{2}+3 x+2 \leq 1\\
\Rightarrow x^{2}+3 x+2>0 \quad \text { or } \
x^{2}+3 x+1\leq 0\\
(x+1)(x+2)>0 \ or\
\frac{-3-\sqrt{5}}{2} \leq x \leq \frac{-3+\sqrt{5}}{2} \\
Final \ answer : {\left[\frac{-3-\sqrt{5}}{2},-2\right) \cup\left(-1, \frac{-3+\sqrt{5}}{2}\right]} ( b ) f ( x ) = [ l o g ( s i n β 1 ( x 2 + 3 x + 2 β ))] sin β 1 x 2 + 3 x + 2 β > 0 β x 2 + 3 x + 2 β > 0 t r u e f or a ll x . A l so , β 1 β€ x 2 + 3 x + 2 β β€ 1 β 0 < x 2 + 3 x + 2 β <= 1 Here x 2 + 3 x + 2 > 0 or x 2 + 3 x + 2 β€ 1 β x 2 + 3 x + 2 > 0 or x 2 + 3 x + 1 β€ 0 ( x + 1 ) ( x + 2 ) > 0 or 2 β 3 β 5 β β β€ x β€ 2 β 3 + 5 β β F ina l an s w er : [ 2 β 3 β 5 β β , β 2 ) βͺ ( β 1 , 2 β 3 + 5 β β ]
( c ) π ( π₯ ) = 1 ( π₯ β 2 ) 2 H e r e , x β 2 β 0 β x β 2 S o , x β R β 2 (c) \ π(π₯)= \frac{1}{ \sqrt{(π₯β2)^2}}\\
Here, \ x-2\neq0\\
\Rightarrow x\neq 2 \\
So, x\in R-{{2}} ( c ) k ( x ) = ( x β 2 ) 2 β 1 β Here , x β 2 ξ = 0 β x ξ = 2 S o , x β R β 2
( d ) π ( π₯ ) = 1 π₯ β ( π₯ + 2 ) (d) π(π₯)= \frac{1}{ π₯β\sqrt{(π₯+2)}} ( d ) j ( x ) = x β ( x + 2 ) β 1 β
Here, π₯ β ( π₯ + 2 ) β 0 π₯β\sqrt{(π₯+2)}\neq0\\ x β ( x + 2 ) β ξ = 0
β x β ( π₯ + 2 ) β x 2 β x + 2 β x 2 β x β 2 β 0 β ( x β 2 ) ( x + 1 ) β 0 β x β β 1 , 2 \Rightarrow x\neq\sqrt{(π₯+2)}\\
\Rightarrow x^2\neq x+2\\
\Rightarrow x^2-x-2\neq0\\
\Rightarrow (x-2)(x+1)\neq 0\\
\Rightarrow x\neq -1,2\\ β x ξ = ( x + 2 ) β β x 2 ξ = x + 2 β x 2 β x β 2 ξ = 0 β ( x β 2 ) ( x + 1 ) ξ = 0 β x ξ = β 1 , 2
Also,
x + 2 > = 0 x > = β 2 x+2>=0\\
x>=-2 x + 2 >= 0 x >= β 2
β΄ x β [ β 2 , β 1 ) βͺ ( β 1 , 2 ) βͺ ( 2 , β ) \therefore x\in [-2,-1)\cup(-1,2)\cup(2,\infty) β΄ x β [ β 2 , β 1 ) βͺ ( β 1 , 2 ) βͺ ( 2 , β )
( e ) π ( π₯ ) = l n β£ π₯ + 3 β£ β 5 H e r e , β£ π₯ + 3 β£ > 0 (e) \ π(π₯)=ln|π₯+3|β5\\
Here, |π₯+3|>0 ( e ) f ( x ) = l n β£ x + 3β£ β 5 Here , β£ x + 3β£ > 0 which is always true.
So, x β R x\in R x β R
Comments