Question 19
Identify the domain of the following functions.
a) π(π₯) = sinβ1(3π₯ β 1)
b) π(π₯) = [log(sinβ1(βπ₯2 + 3π₯ + 2))]
c)π(π₯)= 1 β(π₯β2)2
d) π(π₯)= 1 π₯ββ(π₯+2)
e) π(π₯)=ln|π₯+3|β5
Β
Β Β
"(a) \ud835\udc53(\ud835\udc65) = sin^{-1}(3\ud835\udc65 \u2212 1)\\\\\n\n-1<=3x-1<=1\\\\\n\\Rightarrow 0<=3x<=2\\\\\n\\Rightarrow 0<=x<=\\frac{2}{3}\\\\\n\\therefore x\\in [0,\\frac{2}{3}]"
"(b) \ud835\udc53(\ud835\udc65) = [log(sin^{\u22121}(\\sqrt{\ud835\udc65^2 + 3\ud835\udc65 + 2}))]\\\\\n\n\n\\sin ^{-1} \\sqrt{x^{2}+3 x+2}>0 \\\\\n\\Rightarrow \\sqrt{x^{2}+3 x+2}>0 \\ true \\ for \\ all \\ \\mathrm{x} . \\\\\nAlso,\n \n-1 \\leq \\sqrt{x^{2}+3 x+2} \\leq 1\\\\\n \\Rightarrow 0<\\sqrt{x^{2}+3 x+2}<=1\\\\\nHere \\ \nx^{2}+3 x+2>0 \\quad \\text { or } \\ \nx^{2}+3 x+2 \\leq 1\\\\\n \\Rightarrow x^{2}+3 x+2>0 \\quad \\text { or } \\ \nx^{2}+3 x+1\\leq 0\\\\\n (x+1)(x+2)>0 \\ or\\ \n \n\\frac{-3-\\sqrt{5}}{2} \\leq x \\leq \\frac{-3+\\sqrt{5}}{2} \\\\\nFinal \\ answer : {\\left[\\frac{-3-\\sqrt{5}}{2},-2\\right) \\cup\\left(-1, \\frac{-3+\\sqrt{5}}{2}\\right]}"
"(c) \\ \ud835\udc58(\ud835\udc65)= \\frac{1}{ \\sqrt{(\ud835\udc65\u22122)^2}}\\\\\nHere, \\ x-2\\neq0\\\\\n\\Rightarrow x\\neq 2 \\\\\nSo, x\\in R-{{2}}"
"(d) \ud835\udc57(\ud835\udc65)= \\frac{1}{ \ud835\udc65\u2212\\sqrt{(\ud835\udc65+2)}}"
Here,Β "\ud835\udc65\u2212\\sqrt{(\ud835\udc65+2)}\\neq0\\\\"
"\\Rightarrow x\\neq\\sqrt{(\ud835\udc65+2)}\\\\\n\\Rightarrow x^2\\neq x+2\\\\\n\\Rightarrow x^2-x-2\\neq0\\\\\n\\Rightarrow (x-2)(x+1)\\neq 0\\\\\n\\Rightarrow x\\neq -1,2\\\\"
Also,Β
"x+2>=0\\\\\nx>=-2"
"\\therefore x\\in [-2,-1)\\cup(-1,2)\\cup(2,\\infty)"
"(e) \\ \ud835\udc53(\ud835\udc65)=ln|\ud835\udc65+3|\u22125\\\\\n\nHere, |\ud835\udc65+3|>0"Β which is always true.
So,Β "x\\in R"
Comments
Leave a comment