Answer to Question #239398 in Calculus for sam

Question #239398

Evaluate the limit limθ0sin(θ2)θ\displaystyle{\lim\limits_{\theta \to 0} \dfrac{\sin{(\theta^2)}}{\theta}} using the l'Hopital's Rule.


1
Expert's answer
2021-09-20T17:29:28-0400

limθ0sin(θ2)θ\lim\limits_{\theta\to0}{sin(\theta^2)\over \theta}

=limθ0(f(sin(θ2))f(θ))=\lim\limits_{\theta\to0}({f'(sin(\theta^2))\over f'( \theta)})

=limθ0(2.θ.cos(θ2)1)=\lim\limits_{\theta\to0}({2.\theta.cos(\theta^2)\over 1})

=(2.0.cos(02)1)=01=0=({2.0.cos(0^2)\over 1})={0\over 1}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment