Evaluate the limit limθ→0sin(θ2)θ\displaystyle{\lim\limits_{\theta \to 0} \dfrac{\sin{(\theta^2)}}{\theta}}θ→0limθsin(θ2) using the l'Hopital's Rule.
limθ→0sin(θ2)θ\lim\limits_{\theta\to0}{sin(\theta^2)\over \theta}θ→0limθsin(θ2)
=limθ→0(f′(sin(θ2))f′(θ))=\lim\limits_{\theta\to0}({f'(sin(\theta^2))\over f'( \theta)})=θ→0lim(f′(θ)f′(sin(θ2)))
=limθ→0(2.θ.cos(θ2)1)=\lim\limits_{\theta\to0}({2.\theta.cos(\theta^2)\over 1})=θ→0lim(12.θ.cos(θ2))
=(2.0.cos(02)1)=01=0=({2.0.cos(0^2)\over 1})={0\over 1}=0=(12.0.cos(02))=10=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment