Question #239404

True or false:


The binomial coefficient (1/25)\displaystyle{{-1/2}\choose{5}} is equal to 63256\dfrac{63}{256}

​.


1
Expert's answer
2021-09-22T17:52:29-0400

By definition, the binomial coefficient (nk)\binom nk is given as follows:


(nk)=nkk!=n(n1)(n2)(n(k1))k(k1)(k2)1\binom nk = \frac{n^{\underline{k}}}{k!} = \frac{n(n-1)(n-2)\cdots(n-(k-1))}{k(k-1)(k-2)\cdots 1}

Substituting k=5k = 5 and n=1/2n = -1/2, get:

(1/25)=(1/2)55!==(12)(121)(122)(123)(124)120==63256\binom {-1/2}5 =\frac{(-1/2)^{\underline{5}}}{5!} =\\ = \frac{\left( -\dfrac12 \right)\left( -\dfrac12-1 \right)\left( -\dfrac12-2 \right)\left( -\dfrac12-3 \right)\left( -\dfrac12 -4\right)}{120} =\\ = -\dfrac{63}{256}

Answer. False.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS