Consider the function y= ln(1+x)y=ln(1+x)y=\ ln(1+x)y= ln(1+x)y= ln(1+x)y=ln(1+x) .
Which of the following is the Maclaurin series expansion of the first three terms?
f(x)=ln(1+x) ⟹ f(0)=0f′(x)=1(1+x) ⟹ f′(0)=1f′′(x)=−1(1+x)2 ⟹ f′′(0)=−1f′′′(x)=−2(1+x)3 ⟹ f′′′(0)=−1 ⟹ log(1+x)=0+x∗1+x22!(−1)+x33!(2!)+x44!(−3!) ⟹ log(1+x)=x−x22!+x33−x44+...f(x)= \ln (1+x) \implies f(0)=0\\ f'(x)= \frac{1}{(1+x)}\implies f'(0)=1\\ f''(x)= \frac{-1}{(1+x)^2}\implies f''(0)=-1\\ f'''(x)= \frac{-2}{(1+x)^3}\implies f'''(0)=-1\\ \implies \log (1+x) = 0+x*1+ \frac{x^2}{2!}(-1)+ \frac{x^3}{3!}(2!)+ \frac{x^4}{4!}(-3!)\\ \implies \log (1+x) =x- \frac{x^2}{2!}+ \frac{x^3}{3}- \frac{x^4}{4}+...f(x)=ln(1+x)⟹f(0)=0f′(x)=(1+x)1⟹f′(0)=1f′′(x)=(1+x)2−1⟹f′′(0)=−1f′′′(x)=(1+x)3−2⟹f′′′(0)=−1⟹log(1+x)=0+x∗1+2!x2(−1)+3!x3(2!)+4!x4(−3!)⟹log(1+x)=x−2!x2+3x3−4x4+...
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment