Answer to Question #238317 in Calculus for moe

Question #238317

Consider the function y= ln(1+x)y=ln(1+x)y=\ ln(1+x)y= ln(1+x) .

Which of the following is the Maclaurin series expansion of the first three terms?




  1. xx22+x36x-\frac{x^2}{2}+\frac{x^3}{6}
  2. xx23+x32x-\frac{x^2}{3}+\frac{x^3}{2}
  3. xx22+x33x-\frac{x^2}{2}+\frac{x^3}{3}
  4. x+x22x33x+\frac{x^2}{2}-\frac{x^3}{3}
1
Expert's answer
2021-09-24T06:48:14-0400

f(x)=ln(1+x)    f(0)=0f(x)=1(1+x)    f(0)=1f(x)=1(1+x)2    f(0)=1f(x)=2(1+x)3    f(0)=1    log(1+x)=0+x1+x22!(1)+x33!(2!)+x44!(3!)    log(1+x)=xx22!+x33x44+...f(x)= \ln (1+x) \implies f(0)=0\\ f'(x)= \frac{1}{(1+x)}\implies f'(0)=1\\ f''(x)= \frac{-1}{(1+x)^2}\implies f''(0)=-1\\ f'''(x)= \frac{-2}{(1+x)^3}\implies f'''(0)=-1\\ \implies \log (1+x) = 0+x*1+ \frac{x^2}{2!}(-1)+ \frac{x^3}{3!}(2!)+ \frac{x^4}{4!}(-3!)\\ \implies \log (1+x) =x- \frac{x^2}{2!}+ \frac{x^3}{3}- \frac{x^4}{4}+...


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment