Consider the function "y=\\ ln(1+x)y= ln(1+x)" .
Which of the following is the Maclaurin series expansion of the first three terms?
"f(x)= \\ln (1+x) \\implies f(0)=0\\\\\nf'(x)= \\frac{1}{(1+x)}\\implies f'(0)=1\\\\\nf''(x)= \\frac{-1}{(1+x)^2}\\implies f''(0)=-1\\\\\nf'''(x)= \\frac{-2}{(1+x)^3}\\implies f'''(0)=-1\\\\\n\\implies \\log (1+x) = 0+x*1+ \\frac{x^2}{2!}(-1)+ \\frac{x^3}{3!}(2!)+ \\frac{x^4}{4!}(-3!)\\\\\n\\implies \\log (1+x) =x- \\frac{x^2}{2!}+ \\frac{x^3}{3}- \\frac{x^4}{4}+..."
Comments
Leave a comment