Evaluate the limit "\\displaystyle{\\lim\\limits_{\\theta \\to 0} \\dfrac{\\sin{(\\theta^2)}}{\\theta}}" using the l'Hopital's Rule.
Since we have an indeterminate form of type "\\frac{0}{0}", we can apply the l'Hopital's rule.
"\\lim_{\\theta \\to 0} \\frac{\\sin{\\theta^2}}{\\theta}=\\lim_{\\theta \\to 0} \\frac{\\frac{d}{d\\theta}(\\sin{\\theta^2})}{\\frac{d}{d\\theta}(\\theta)}=\\lim_{\\theta \\to 0}2 \\theta cos{\\theta^2}=0\\\\\\\\\n\\text{Hence }\\\\\n\\lim_{\\theta \\to 0} \\frac{\\sin{\\theta^2}}{\\theta}=0"
Comments
Leave a comment