To convert from cylindrical to rectangular coordinates, we use the equations
x = r cos  θ , y = r sin  θ , z = z x=r\cos \theta, y=r\sin \theta, z=z x = r cos θ , y = r sin θ , z = z  
z = x 2 + y 2 , z = ( r cos  θ ) 2 + ( r sin  θ ) 2 = r z=\sqrt{x^2+y^2}, z=\sqrt{(r\cos \theta)^2+(r\sin \theta)^2}=r z = x 2 + y 2  , z = ( r cos θ ) 2 + ( r sin θ ) 2  = r  
z = x 2 + y 2 , z = ( r cos  θ ) 2 + ( r sin  θ ) 2 = r 2 z=x^2+y^2, z=(r\cos \theta)^2+(r\sin \theta)^2=r^2 z = x 2 + y 2 , z = ( r cos θ ) 2 + ( r sin θ ) 2 = r 2   
r = r 2 , r 1 = 0 , r 2 = 1 r=r^2, r_1=0, r_2=1 r = r 2 , r 1  = 0 , r 2  = 1  
V = ∫ 0 π / 2 d θ ∫ 0 1 r d r ∫ r 2 r d z V=\displaystyle\int_{0}^{\pi/2}d\theta\displaystyle\int_{0}^{1}rdr\displaystyle\int_{r^2}^{r}dz V = ∫ 0 π /2  d θ ∫ 0 1  r d r ∫ r 2 r  d z  
= ∫ 0 π / 2 d θ ∫ 0 1 ( r 2 − r 3 ) d r =\displaystyle\int_{0}^{\pi/2}d\theta\displaystyle\int_{0}^{1}(r^2-r^3)dr = ∫ 0 π /2  d θ ∫ 0 1  ( r 2 − r 3 ) d r  
= π 2 ( 1 3 − 1 4 ) = π 24 ( u n i t s 2 ) =\dfrac{\pi}{2}(\dfrac{1}{3}-\dfrac{1}{4})=\dfrac{\pi}{24}({units}^2) = 2 π  ( 3 1  − 4 1  ) = 24 π  ( u ni t s 2 )  
Comments