Question #238274

Use a triple integral to determine the volume of the region bounded by z =


p


x


2 + y


2 and z = x


2 + y


2


In 1st octant


1
Expert's answer
2021-09-20T18:21:20-0400

To convert from cylindrical to rectangular coordinates, we use the equations


x=rcosθ,y=rsinθ,z=zx=r\cos \theta, y=r\sin \theta, z=z

z=x2+y2,z=(rcosθ)2+(rsinθ)2=rz=\sqrt{x^2+y^2}, z=\sqrt{(r\cos \theta)^2+(r\sin \theta)^2}=r

z=x2+y2,z=(rcosθ)2+(rsinθ)2=r2z=x^2+y^2, z=(r\cos \theta)^2+(r\sin \theta)^2=r^2

r=r2,r1=0,r2=1r=r^2, r_1=0, r_2=1

V=0π/2dθ01rdrr2rdzV=\displaystyle\int_{0}^{\pi/2}d\theta\displaystyle\int_{0}^{1}rdr\displaystyle\int_{r^2}^{r}dz

=0π/2dθ01(r2r3)dr=\displaystyle\int_{0}^{\pi/2}d\theta\displaystyle\int_{0}^{1}(r^2-r^3)dr

=π2(1314)=π24(units2)=\dfrac{\pi}{2}(\dfrac{1}{3}-\dfrac{1}{4})=\dfrac{\pi}{24}({units}^2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS