Question #237915
Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disk or washer.

1. y=ln(x), y=1, y=2, x=0; about the y axis
2. y=e^(-x), y=1, x=2; about y=2
1
Expert's answer
2021-09-17T00:17:20-0400

1.


y=lnx=>x=eyy=\ln x=>x=e^y


V=π12(ey)2dy=π[e2y2]21V=\pi\displaystyle\int_{1}^{2}(e^y)^2dy=\pi[\dfrac{e^{2y}}{2}]\begin{matrix} 2\\ 1 \end{matrix}

=π(e4e2)2(units3)=\dfrac{\pi(e^4-e^2)}{2}({units}^3)



2.


ex=1=>x=0e^{-x}=1=>x=0

V=π02[(2ex)2(21)2]dxV=\pi\displaystyle\int_{0}^{2}[(2-e^{-x})^2-(2-1)^2]dx

=π02[34ex+e2x]dx=\pi\displaystyle\int_{0}^{2}[3-4e^{-x}+e^{-2x}]dx

=π[3x+4exe2x2]20=\pi[3x+4e^{-x}-\dfrac{e^{-2x}}{2}]\begin{matrix} 2\\ 0 \end{matrix}

=π(6+4e2e4204+12)=\pi(6+4e^{-2}-\dfrac{e^{-4}}{2}-0-4+\dfrac{1}{2})

=π(52+4e2e42)(units3)=\pi(\dfrac{5}{2}+4e^{-2}-\dfrac{e^{-4}}{2})({units}^3)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS