Answer to Question #238304 in Calculus for moe

Question #238304

Evaluate the limit  limx0exx1x2\displaystyle{\lim\limits_{x \to 0} \dfrac{e^{x}-x-1}{x^2}} by using l'Hopital's Rule twice.




1
Expert's answer
2021-12-14T05:54:29-0500

Evaluate the limit limx0exx1x2 by using l’Hopital’s Rule twiceSolutionby direct substitution, exx1x2=00 which is an Intermediate form.Applying the l’Hopital’s rule,    limx0exx1x2=limx0ddx(exx1)ddx(x2)=limx0ex12xAgain, by direct substitution, limx0ex12x=00Applying the l’Hopital’s rule again,    limx0ex12x=limx0ddx(ex1)ddx(2x)=limx0ex2=12Hence limx0exx1x2=12\text{Evaluate the limit } \mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - x - 1}}{{{x^2}}} \text{ by using l'Hopital's Rule twice} \\ \textit{Solution} \\ \text{by direct substitution, } \frac{{{e^x} - x - 1}}{{{x^2}}} = \frac{0}{0} \text{ which is an } \textit{Intermediate form}. \\ \text{Applying the l'Hopital's rule,} \implies \mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - x - 1}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{d}{{dx}}\left( {{e^x} - x - 1} \right)}}{{\frac{d}{{dx}}\left( {{x^2}} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{{2x}} \\ \text{Again, by direct substitution, } \mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{{2x}} = \frac{0}{0} \text{Applying the l'Hopital's rule again,} \implies \mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{{2x}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{d}{{dx}}\left( {{e^x} - 1} \right)}}{{\frac{d}{{dx}}\left( {2x} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^x}}}{2} = \frac{1}{2} \\ \text{Hence } \mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - x - 1}}{{{x^2}}} = \frac{1}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment