Evaluate the limit x→0limx2ex−x−1 by using l’Hopital’s Rule twiceSolutionby direct substitution, x2ex−x−1=00 which is an Intermediate form.Applying the l’Hopital’s rule,⟹x→0limx2ex−x−1=x→0limdxd(x2)dxd(ex−x−1)=x→0lim2xex−1Again, by direct substitution, x→0lim2xex−1=00Applying the l’Hopital’s rule again,⟹x→0lim2xex−1=x→0limdxd(2x)dxd(ex−1)=x→0lim2ex=21Hence x→0limx2ex−x−1=21
Comments
Leave a comment