Question #238276

(Section 13.3 and Chapter 14) Let D be the region in R 3 p that lies inside the cone z = x 2 + y 2 above the plane z = 1 and below the hemisphere z = p 4 − x 2 − y 2 . (a) Sketch the region D in R 3 .(b) Express the volume of D as a sum of triple integrals, using cylindrical coordinates.


1
Expert's answer
2021-10-13T01:04:34-0400

Answer:




V=V1+V2=02π0114x2y2rdzdrdϕ+02π12r4x2y2rdzdrdϕV=V_1+V_2=\int_0^{2\pi}\int_0^1\int_1^{\sqrt{4-x^2-y^2}}rdzdrd\phi+ \int_0^{2\pi}\int_1^{\sqrt{2}}\int_r^{\sqrt{4-x^2-y^2}}rdzdrd\phi

Explanation on bounds of integrals

1) Intersection of cone z=x2+y2z=\sqrt{x^2+y^2} and plane z=1 is 1=x2+y21=\sqrt{x^2+y^2}

or x2+y2=1x^2+y^2=1 This is the circle with radius 1 and it is upper bound by r in V1 and lower bound with respect to r in V2.

2) Intersection of the cone z2=x2+y2z^2=x^2+y^2 and sphere x2+y2+z2=4x^2+y^2+z^2=4 is line x2+y2=2, z=2x^2+y^2=2,\space z=\sqrt{2} . This is circle on height 2\sqrt{2} with radius r=2r=\sqrt{2} and 2\sqrt{2} is upper bond by r in V2.

3) For V2 z changes from plane z=1 to sphere z=4x2+y2z=\sqrt{4-x^2+y^2}

4) For V1 z changes from cone z=x2+y2=rz=\sqrt{x^2+y^2}=r to upper bound in spere z=4x2y2z=\sqrt{4-x^2-y^2} .

5) All regions possess circular symmetry that is why ϕ\phi changes from 0 to 2π2\cdot \pi




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS