Question #238307

True or False

If the function ff is odd, then 11f(x)dx=0\displaystyle{\int_{-1}^{1}f(x)dx=0}


1
Expert's answer
2021-12-14T05:56:17-0500

The solution is TrueFrom 11f(x)dx=0.If we let x=t    dx=dt11f(x)dx=11f(t)dt=11f(x)dxIf f is , that is f(x)=f(x)11f(x)dx+11f(x)dx=0Which is True\text{The solution is } \textit{True} \\ \text{From } \int\limits_{ - 1}^1 {f\left( x \right)} dx = 0. \text{If we let } x = - t \implies dx = - dt \\ \Rightarrow \int\limits_{ - 1}^1 {f\left( x \right)} dx = \int\limits_1^{ - 1} {f\left( { - t} \right)} dt = \int\limits_{ - 1}^1 {f\left( { - x} \right)} dx \\ \text{If } f \text{ is , that is } f\left( { - x} \right) = - f\left( x \right) \\ \Rightarrow \int\limits_{ - 1}^1 {f\left( x \right)} dx + \int\limits_{ - 1}^1 {f\left( { - x} \right)} dx = 0 \\ \text{Which is } \textbf{\textit{True}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS