f(x)= 3(x-1)(x+2) / (x-4) (x+2)
f) state horizontal asymptotes
g) sketch of graph
"x-4\\not=0, x+2\\not=0"
"Domain: (-\\infin, -2)\\cap (-2, 4)\\cap (4, \\infin)"
(f)
"=\\lim\\limits_{x\\to-\\infin}\\dfrac{3(x-1)}{x-4}=\\dfrac{3}{1}=3"
"=\\lim\\limits_{x\\to\\infin}\\dfrac{3(x-1)}{x-4}=\\dfrac{3}{1}=3"
Horizontal asymptote: "y=3"
(g)
"=\\lim\\limits_{x\\to-2^-}\\dfrac{3(x-1)}{x-4}=\\dfrac{3(-2-1)}{-2-4}=\\dfrac{3}{2}"
"\\lim\\limits_{x\\to-2^-}f(x)=\\dfrac{1}{2}=\\lim\\limits_{x\\to-2^+}f(x)=>\\lim\\limits_{x\\to-2}f(x)=\\dfrac{1}{2}"
The function "f(x)" has a removable discontinuity at "x=-2."
"=\\lim\\limits_{x\\to4^-}\\dfrac{3(x-1)}{x-4}=-\\infin"
Vertical asymptote: "x=4"
Point "(0, \\dfrac{3}{4})" is "y" -intercept.
Point "(1, 0)" is "x" -intercept.
Comments
Leave a comment