Question #236683

f(x) = 3(x-1)(x+2)/ (x-4) (x+2)

a) state vertical asymptotes

b) state the roots


1
Expert's answer
2021-09-14T06:05:38-0400

ANSWER. a)The line x=4x=4 is the vertical asymptote

b) x=1x=1 is the only root of the function.

EXPLANATION

The function ff is a rational function since it has the form f(x)=P(x)Q(x)f(x)=\frac { P(x) }{ Q(x) } where PP and QQ are polynomials. P(x)=3(x1)(x+2),Q(x)=(x4)(x+2)P(x)=3(x-1)(x+2), Q(x)=(x-4)(x+2) .The domain of definition of function ff is the set D=(,+){x:Q(x)=0}=(,2)(2,4)(4,+) .D=\left( -\infty ,+\infty \right) \diagdown \left\{ x:Q(x)=0 \right\} =\left( -\infty ,-2 \right) \cup \left( -2,4 \right) \cup \left( 4,+\infty \right) \ . If xDx\in D then f(x)=3(x1) (x4) .f(x)=\frac { 3(x-1)\ }{ (x-4)\ } . In the domain of the definition of the function ff is continuous. Since limx2f(x)=limx23(x1)(x4)=3(21)(24)=32\lim _{ x\rightarrow -2 }{ f(x)=\lim _{ x\rightarrow -2 }{ \frac { 3(x-1)\quad }{ (x-4)\quad } = } \frac { 3\cdot (-2-1) }{ (-2-4) } =\frac { 3 }{ 2 } } , then x=2x=-2 point of removable of discontinuity . a)The line x=4x=4 is the vertical asymptote, because limx4f(x)=limx43(x1)(x4)= .\lim _{ x\rightarrow 4 }{ f(x)=\lim _{ x\rightarrow 4 }{ \frac { 3(x-1)\quad }{ (x-4)\quad } =\infty } \ }.

b) f(x)=0f(x)=0 if and only if x=1.x=1. So, x=1x=1 is the only root of the function.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS