f(x) = 3(x-1)(x+2)/ (x-4) (x+2)
a) state vertical asymptotes
b) state the roots
ANSWER. a)The line "x=4" is the vertical asymptote
b) "x=1" is the only root of the function.
EXPLANATION
The function "f" is a rational function since it has the form "f(x)=\\frac { P(x) }{ Q(x) }" where "P" and "Q" are polynomials. "P(x)=3(x-1)(x+2), Q(x)=(x-4)(x+2)" .The domain of definition of function "f" is the set "D=\\left( -\\infty ,+\\infty \\right) \\diagdown \\left\\{ x:Q(x)=0 \\right\\} =\\left( -\\infty ,-2 \\right) \\cup \\left( -2,4 \\right) \\cup \\left( 4,+\\infty \\right) \\ ." If "x\\in D" then "f(x)=\\frac { 3(x-1)\\ }{ (x-4)\\ } ." In the domain of the definition of the function "f" is continuous. Since "\\lim _{ x\\rightarrow -2 }{ f(x)=\\lim _{ x\\rightarrow -2 }{ \\frac { 3(x-1)\\quad }{ (x-4)\\quad } = } \\frac { 3\\cdot (-2-1) }{ (-2-4) } =\\frac { 3 }{ 2 } }" , then "x=-2" point of removable of discontinuity . a)The line "x=4" is the vertical asymptote, because "\\lim _{ x\\rightarrow 4 }{ f(x)=\\lim _{ x\\rightarrow 4 }{ \\frac { 3(x-1)\\quad }{ (x-4)\\quad } =\\infty } \\ }."
b) "f(x)=0" if and only if "x=1." So, "x=1" is the only root of the function.
Comments
Leave a comment