The motion can be broken into horizontal and vertical motions
v e r t i c a l : y ( t ) = h 0 + v 0 y t − g t 2 2 vertical: y(t)=h_0+v_{0y}t-\dfrac{gt^2}{2} v er t i c a l : y ( t ) = h 0 + v 0 y t − 2 g t 2
h o r i z o n t a l : x ( t ) = v 0 x t horizontal : x(t)=v_{0x}t h or i zo n t a l : x ( t ) = v 0 x t The highest point in any trajectory, called the apex , is reached when
v y ( t 1 ) = v 0 y − g t 1 = 0 v_y(t_1)=v_{0y}-gt_1=0 v y ( t 1 ) = v 0 y − g t 1 = 0 Then
y ( t 1 ) = h m a x = h 0 + v 0 y ( v 0 y g ) − g 2 ( v 0 y g ) 2 = h 0 + v 0 y 2 2 g y(t_1)=h_{max}=h_0+v_{0y}(\dfrac{v_{0y}}{g})-\dfrac{g}{2}(\dfrac{v_{0y}}{g})^2=h_0+\dfrac{v_{0y}^2}{2g} y ( t 1 ) = h ma x = h 0 + v 0 y ( g v 0 y ) − 2 g ( g v 0 y ) 2 = h 0 + 2 g v 0 y 2
= h 0 + v 0 y 2 2 g =h_0+\dfrac{v_{0y}^2}{2g} = h 0 + 2 g v 0 y 2
v 0 y = 2 g ( h m a x − h 0 ) v_{0y}=\sqrt{2g(h_{max}-h_0)} v 0 y = 2 g ( h ma x − h 0 )
v 0 y = 2 ( 9.8 m / s 2 ) ( 7 m − 2 m ) = 7 2 m / s v_{0y}=\sqrt{2(9.8\ m/s^2)(7\ m-2\ m)}=7\sqrt{2}\ m/s v 0 y = 2 ( 9.8 m / s 2 ) ( 7 m − 2 m ) = 7 2 m / s
x ( t 1 ) = v 0 x t 1 = v 0 x v 0 y g x(t_1)=v_{0x}t_1=\dfrac{v_{0x}v_{0y}}{g} x ( t 1 ) = v 0 x t 1 = g v 0 x v 0 y
v 0 x = 4 m ( 9.8 m / s 2 ) 7 2 m / s = 2.8 2 m / s v_{0x}=\dfrac{4\ m(9.8\ m/s^2)}{7\sqrt{2}\ m/s}=2.8\sqrt{2}\ m/s v 0 x = 7 2 m / s 4 m ( 9.8 m / s 2 ) = 2.8 2 m / s
The object will fall to the ground in time t 2 t_2 t 2
y ( t 2 ) = h 0 + v 0 y t 2 − g t 2 2 2 = 0 y(t_2)=h_0+v_{0y}t_2-\dfrac{gt_2^2}{2}=0 y ( t 2 ) = h 0 + v 0 y t 2 − 2 g t 2 2 = 0
2 + 7 2 t 2 − 9.8 t 2 2 2 = 0 , t 2 > 0 2+7\sqrt{2}t_2-\dfrac{9.8t_2^2}{2}=0, t_2>0 2 + 7 2 t 2 − 2 9.8 t 2 2 = 0 , t 2 > 0
4.9 t 2 2 − 7 2 t 2 − 2 = 0 4.9t_2^2-7\sqrt{2}t_2-2=0 4.9 t 2 2 − 7 2 t 2 − 2 = 0
D = ( − 7 2 ) 2 − 4 ( 4.9 ) ( − 2 ) = 137.2 D=(-7\sqrt{2})^2-4(4.9)(-2)=137.2 D = ( − 7 2 ) 2 − 4 ( 4.9 ) ( − 2 ) = 137.2
t 2 = 7 2 ± 137.2 2 ( 4.9 ) = 2 ± 2.8 1.4 t_2=\dfrac{7\sqrt{2}\pm\sqrt{137.2}}{2(4.9)}=\dfrac{\sqrt{2}\pm\sqrt{2.8}}{1.4} t 2 = 2 ( 4.9 ) 7 2 ± 137.2 = 1.4 2 ± 2.8
Since t 2 > 0 , t_2>0, t 2 > 0 , then we take
t 2 = 2 + 2.8 1.4 t_2=\dfrac{\sqrt{2}+\sqrt{2.8}}{1.4} t 2 = 1.4 2 + 2.8
The horizontal distance between the object's initial and final positions is
d = x ( t 2 ) − x ( 0 ) = v 0 x t 2 − 0 d=x(t_2)-x(0)=v_{0x}t_2-0 d = x ( t 2 ) − x ( 0 ) = v 0 x t 2 − 0
d = 2.8 2 ( 2 + 2.8 1.4 ) = 4 ( 1 + 1.4 ) ( m ) d=2.8\sqrt{2}(\dfrac{\sqrt{2}+\sqrt{2.8}}{1.4})=4(1+\sqrt{1.4}) (m) d = 2.8 2 ( 1.4 2 + 2.8 ) = 4 ( 1 + 1.4 ) ( m )
Comments