Question #236150

An object thrown from a height of 2 m above the ground follows a parabolic path

until the object falls to the ground; see Figure. If the object reaches a maximum

height (measured from the ground) of 7 m after travelling a horizontal distance of 4

m, determine the horizontal distance between the object's initial and final positions.


1
Expert's answer
2021-09-12T23:52:36-0400

The motion can be broken into horizontal and vertical motions


vertical:y(t)=h0+v0ytgt22vertical: y(t)=h_0+v_{0y}t-\dfrac{gt^2}{2}

horizontal:x(t)=v0xthorizontal : x(t)=v_{0x}t

The highest point in any trajectory, called the apex, is reached when


vy(t1)=v0ygt1=0v_y(t_1)=v_{0y}-gt_1=0

Then


y(t1)=hmax=h0+v0y(v0yg)g2(v0yg)2=h0+v0y22gy(t_1)=h_{max}=h_0+v_{0y}(\dfrac{v_{0y}}{g})-\dfrac{g}{2}(\dfrac{v_{0y}}{g})^2=h_0+\dfrac{v_{0y}^2}{2g}

=h0+v0y22g=h_0+\dfrac{v_{0y}^2}{2g}

v0y=2g(hmaxh0)v_{0y}=\sqrt{2g(h_{max}-h_0)}

v0y=2(9.8 m/s2)(7 m2 m)=72 m/sv_{0y}=\sqrt{2(9.8\ m/s^2)(7\ m-2\ m)}=7\sqrt{2}\ m/s

x(t1)=v0xt1=v0xv0ygx(t_1)=v_{0x}t_1=\dfrac{v_{0x}v_{0y}}{g}

v0x=4 m(9.8 m/s2)72 m/s=2.82 m/sv_{0x}=\dfrac{4\ m(9.8\ m/s^2)}{7\sqrt{2}\ m/s}=2.8\sqrt{2}\ m/s


The object will fall to the ground in time t2t_2

y(t2)=h0+v0yt2gt222=0y(t_2)=h_0+v_{0y}t_2-\dfrac{gt_2^2}{2}=0

2+72t29.8t222=0,t2>02+7\sqrt{2}t_2-\dfrac{9.8t_2^2}{2}=0, t_2>0

4.9t2272t22=04.9t_2^2-7\sqrt{2}t_2-2=0

D=(72)24(4.9)(2)=137.2D=(-7\sqrt{2})^2-4(4.9)(-2)=137.2

t2=72±137.22(4.9)=2±2.81.4t_2=\dfrac{7\sqrt{2}\pm\sqrt{137.2}}{2(4.9)}=\dfrac{\sqrt{2}\pm\sqrt{2.8}}{1.4}


Since t2>0,t_2>0, then we take


t2=2+2.81.4t_2=\dfrac{\sqrt{2}+\sqrt{2.8}}{1.4}


The horizontal distance between the object's initial and final positions is


d=x(t2)x(0)=v0xt20d=x(t_2)-x(0)=v_{0x}t_2-0

d=2.82(2+2.81.4)=4(1+1.4)(m)d=2.8\sqrt{2}(\dfrac{\sqrt{2}+\sqrt{2.8}}{1.4})=4(1+\sqrt{1.4}) (m)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS