Let "A=(0,1), B=(1, 0), O=(0,0)."
Line OA: "x=0, 0\\leq y\\leq1"
LineAB: "y=-x+1, 0\\leq x\\leq1"
Line OB: "y=0, 0\\leq x\\leq 1"
Given "\\rho(x,y)=30xy"
Find the mass of the lamina
"m=\\iint_D\\rho(x,y)dA=\\displaystyle\\int_{0}^1\\displaystyle\\int_{0}^{1-x}30xydydx=""=30\\displaystyle\\int_{0}^1x\\big[{y^2\\over 2}\\big]\\begin{matrix}\n 1-x \\\\\n 0 \n\\end{matrix}dx=15\\displaystyle\\int_{0}^1(x-2x^2+x^3 )dx=""=15\\big[{x^2 \\over 2}-{2x^3 \\over 3}+{x^4 \\over 4}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}={5 \\over 4} (units\\ of\\ mass)"Mass of the lamina is "\\dfrac{5}{4}" units of mass.
The moment of the lamina about the x-axis
"M_x=\\iint_Dy\\rho(x,y)dA=30\\displaystyle\\int_{0}^1\\displaystyle\\int_{0}^{1-x}xy^2dydx="
"=30\\displaystyle\\int_{0}^1x\\big[{y^3\\over 3}\\big]\\begin{matrix}\n 1-x \\\\\n 0 \n\\end{matrix}dx"
"=10\\displaystyle\\int_{0}^1(x-3x^2+3x^3-x^4 )dx"
"=10\\big[{x^2 \\over 2}-{3x^3 \\over 3}+{3x^4 \\over 4}-{x^5 \\over 5}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"=5-10+\\dfrac{15}{2}-2={1 \\over2}"
The moment of the lamina about the y-axis
"M_y=\\iint_Dx\\rho(x,y)dA=\\displaystyle\\int_{0}^1\\displaystyle\\int_{0}^{1-x}30x^2ydydx"
"=30\\displaystyle\\int_{0}^1x^2\\big[{y^2\\over 2}\\big]\\begin{matrix}\n 1-x \\\\\n 0 \n\\end{matrix}dx"
"=15\\displaystyle\\int_{0}^1(x^2-2x^3+x^4 )dx"
"=15\\big[{x^3 \\over 3}-{2x^4 \\over 4}+{x^5 \\over 5}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"=5-\\dfrac{15}{2}+3=\\dfrac{1}{2}"
"M_x=\\dfrac{1}{2}, M_y=\\dfrac{1}{2}"
Find the coordinates of the center of mass
"\\bar{x}={M_y\\over m}=\\dfrac{\\dfrac{1}{2}}{\\dfrac{5}{4}}=\\dfrac{2}{5}"
"\\bar{y}={M_x\\over m}=\\dfrac{\\dfrac{1}{2}}{\\dfrac{5}{4}}=\\dfrac{2}{5}"
Center of gravity is"\\bigg(\\dfrac{2}{5},\\dfrac{2}{5}\\bigg)."
Comments
Leave a comment