Let A=(0,1),B=(1,0),O=(0,0).
Line OA: x=0,0≤y≤1
LineAB: y=−x+1,0≤x≤1
Line OB: y=0,0≤x≤1
Given ρ(x,y)=30xy
Find the mass of the lamina
m=∬Dρ(x,y)dA=∫01∫01−x30xydydx==30∫01x[2y2]1−x0dx=15∫01(x−2x2+x3)dx==15[2x2−32x3+4x4]10=45(units of mass)Mass of the lamina is 45 units of mass.
The moment of the lamina about the x-axis
Mx=∬Dyρ(x,y)dA=30∫01∫01−xxy2dydx=
=30∫01x[3y3]1−x0dx
=10∫01(x−3x2+3x3−x4)dx
=10[2x2−33x3+43x4−5x5]10
=5−10+215−2=21
The moment of the lamina about the y-axis
My=∬Dxρ(x,y)dA=∫01∫01−x30x2ydydx
=30∫01x2[2y2]1−x0dx
=15∫01(x2−2x3+x4)dx
=15[3x3−42x4+5x5]10
=5−215+3=21
Mx=21,My=21
Find the coordinates of the center of mass
xˉ=mMy=4521=52
yˉ=mMx=4521=52
Center of gravity is(52,52).
Comments