Answer to Question #235616 in Calculus for john k

Question #235616

4)

Find the area of the region bounded by the curves

Y = X2 - 4X + 4 and Y = 10 - X2

From X = 10 and X = 4


1
Expert's answer
2021-09-14T05:21:28-0400

We have to process the integral of area A=410[f(x)g(x)]dx;A= \int_{4}^{10} \Big[ f(x)-g(x) \Big] {dx}; we also define


f(x)=x24x+4 (we define this function as the superior function)g(x)=10x2 (we define this function as the inferior function)\\ f(x)=x^2-4x+4 \text{ (we define this function as the superior function)} \\ g(x)=10-x^2 \text{ (we define this function as the inferior function)}


Then we substitute and proceed to solve the integral and find the value for the area:


A=410[f(x)g(x)]dxA=410[(x24x+4)(10x2)]dxA=410(2x24x6)dxA=2410(x22x3)dxA= \int^{10}_{4} \Big[ f(x)-g(x) \Big] {dx} \\ A= \int_{4}^{10} \Big[ (x^2-4x+4)-(10-x^2) \Big] {dx} \\ A= \int_{4}^{10} \Big( 2x^2-4x -6 \Big) {dx} \\A= 2 \int_{4}^{10} \Big( x^2-2x-3 \Big) {dx}

We proceed to solve the integral and substitute the limits to find the area:


A=2[x33x23x]410A=2{[(103)33(10)(102)][(43)33(4)(42)]}A=2{1000330100(6431216)}A=2(210)    A=420 area units (u2)\\A=2\bigg[ \cfrac{x^3}{3}-x^2-3x \bigg]_{4}^{10} \\A=2\bigg\{ \Big[\cfrac{(10^3)}{3}- 3(10)-(10^2) \Big] - \Big[ \cfrac{(4^3)}{3}-3(4)-(4^2) \Big] \bigg\} \\A=2\bigg\{\cfrac{1000}{3}-30-100- \Big(\cfrac{64}{3} -12-16 \Big) \bigg\} \\ A=2 \big( 210 \big) \\ \implies A =420 \text{ area units (u}^2)


In conclusion, the area defined of the region boundedby the curves Y = X- 4X + 4 and Y = 10 - X2 from X = 4 and X = 10 is equal toA= 420 u2 (the solution will have area units).Reference:

  • Thomas, G. B., & Finney, R. L. (1961). Calculus. Addison-Wesley Publishing Company.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment