Find the number b such that the line y=b divides the region bounded by the curves y=x2 and y=4 into two regions with equal area.
Find the area of the region bounded by the curves y=x2 and y=4
"x_1=-2, x_2=2"
"A_1=\\displaystyle\\int_{-2}^{2}(4-x^2)dx=\\big[4x-\\dfrac{x^3}{3}\\big]\\begin{matrix}\n 2 \\\\\n -2\n\\end{matrix}"
"=8-\\dfrac{8}{3}-(-8+\\dfrac{8}{3})=\\dfrac{32}{3} ({units}^2)"
Find the area of the region bounded by the curves y=x2 and y=b
"x_1=-\\sqrt{b}, x_2=\\sqrt{b}"
"A_2=\\displaystyle\\int_{-\\sqrt{b}}^{\\sqrt{b}}(b-x^2)dx=\\big[bx-\\dfrac{x^3}{3}\\big]\\begin{matrix}\n \\sqrt{b} \\\\\n -\\sqrt{b}\n\\end{matrix}"
"=b\\sqrt{b}-\\dfrac{b\\sqrt{b}}{3}-(-b\\sqrt{b}+\\dfrac{b\\sqrt{b}}{3})=\\dfrac{4b\\sqrt{b}}{3} ({units}^2)"
The line y=b divides the region bounded by the curves y=x2 and y=4 into two regions with equal area
"\\dfrac{32}{3}=2(\\dfrac{4b\\sqrt{b}}{3})"
"b^3=16"
"b=2\\sqrt[3]{2}"
Comments
Leave a comment