Question #236119

Find the number b such that the line y=b divides the region bounded by the curves y=x2 and y=4 into two regions with equal area.


1
Expert's answer
2021-09-13T00:04:27-0400

Find the area of the region bounded by the curves y=x2 and y=4 


x2=4x^2=4

x1=2,x2=2x_1=-2, x_2=2

A1=22(4x2)dx=[4xx33]22A_1=\displaystyle\int_{-2}^{2}(4-x^2)dx=\big[4x-\dfrac{x^3}{3}\big]\begin{matrix} 2 \\ -2 \end{matrix}

=883(8+83)=323(units2)=8-\dfrac{8}{3}-(-8+\dfrac{8}{3})=\dfrac{32}{3} ({units}^2)

Find the area of the region bounded by the curves y=x2 and y=b 


x2=b,b>0x^2=b, b>0

x1=b,x2=bx_1=-\sqrt{b}, x_2=\sqrt{b}

A2=bb(bx2)dx=[bxx33]bbA_2=\displaystyle\int_{-\sqrt{b}}^{\sqrt{b}}(b-x^2)dx=\big[bx-\dfrac{x^3}{3}\big]\begin{matrix} \sqrt{b} \\ -\sqrt{b} \end{matrix}

=bbbb3(bb+bb3)=4bb3(units2)=b\sqrt{b}-\dfrac{b\sqrt{b}}{3}-(-b\sqrt{b}+\dfrac{b\sqrt{b}}{3})=\dfrac{4b\sqrt{b}}{3} ({units}^2)

The line y=b divides the region bounded by the curves y=x2 and y=4 into two regions with equal area


A1=2A2A_1=2A_2

323=2(4bb3)\dfrac{32}{3}=2(\dfrac{4b\sqrt{b}}{3})


bb=4b\sqrt{b}=4

b3=16b^3=16

b=223b=2\sqrt[3]{2}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS