Find the area of the region bounded by the curves y=x2 and y=4
x 2 = 4 x^2=4 x 2 = 4
x 1 = − 2 , x 2 = 2 x_1=-2, x_2=2 x 1 = − 2 , x 2 = 2
A 1 = ∫ − 2 2 ( 4 − x 2 ) d x = [ 4 x − x 3 3 ] 2 − 2 A_1=\displaystyle\int_{-2}^{2}(4-x^2)dx=\big[4x-\dfrac{x^3}{3}\big]\begin{matrix}
2 \\
-2
\end{matrix} A 1 = ∫ − 2 2 ( 4 − x 2 ) d x = [ 4 x − 3 x 3 ] 2 − 2
= 8 − 8 3 − ( − 8 + 8 3 ) = 32 3 ( u n i t s 2 ) =8-\dfrac{8}{3}-(-8+\dfrac{8}{3})=\dfrac{32}{3} ({units}^2) = 8 − 3 8 − ( − 8 + 3 8 ) = 3 32 ( u ni t s 2 )
Find the area of the region bounded by the curves y=x2 and y=b
x 2 = b , b > 0 x^2=b, b>0 x 2 = b , b > 0
x 1 = − b , x 2 = b x_1=-\sqrt{b}, x_2=\sqrt{b} x 1 = − b , x 2 = b
A 2 = ∫ − b b ( b − x 2 ) d x = [ b x − x 3 3 ] b − b A_2=\displaystyle\int_{-\sqrt{b}}^{\sqrt{b}}(b-x^2)dx=\big[bx-\dfrac{x^3}{3}\big]\begin{matrix}
\sqrt{b} \\
-\sqrt{b}
\end{matrix} A 2 = ∫ − b b ( b − x 2 ) d x = [ b x − 3 x 3 ] b − b
= b b − b b 3 − ( − b b + b b 3 ) = 4 b b 3 ( u n i t s 2 ) =b\sqrt{b}-\dfrac{b\sqrt{b}}{3}-(-b\sqrt{b}+\dfrac{b\sqrt{b}}{3})=\dfrac{4b\sqrt{b}}{3} ({units}^2) = b b − 3 b b − ( − b b + 3 b b ) = 3 4 b b ( u ni t s 2 ) The line y=b divides the region bounded by the curves y=x2 and y=4 into two regions with equal area
A 1 = 2 A 2 A_1=2A_2 A 1 = 2 A 2
32 3 = 2 ( 4 b b 3 ) \dfrac{32}{3}=2(\dfrac{4b\sqrt{b}}{3}) 3 32 = 2 ( 3 4 b b )
b b = 4 b\sqrt{b}=4 b b = 4
b 3 = 16 b^3=16 b 3 = 16
b = 2 2 3 b=2\sqrt[3]{2} b = 2 3 2
Comments