Question #236267

Find the derivative of each of the following functions :

(a)x^2+1 / (2x+1)^1/2

(b)ln(3x^3-9e^x)^3

(c)(x^2+3)√(x)



1
Expert's answer
2021-09-21T12:44:05-0400

(a)


(x2+1(2x+1)1/2)=((x2+1)(2x+1)1/2)(\dfrac{x^2+1}{(2x+1)^{1/2}})'=((x^2+1)(2x+1)^{-1/2})'

=2x(2x+1)1/212(2)(2x+1)3/2(x2+1)=2x(2x+1)^{-1/2}-\dfrac{1}{2}(2)(2x+1)^{-3/2}(x^2+1)

=4x2+2xx21(2x+1)3/2=3x2+2x1(2x+1)3/2=\dfrac{4x^2+2x-x^2-1}{(2x+1)^{3/2}}=\dfrac{3x^2+2x-1}{(2x+1)^{3/2}}

(b)


(ln(3x39ex)3)=3(ln(3x39ex))(\ln(3x^3-9e^x)^3)'=3(\ln(3x^3-9e^x))'

=3(3x39ex)3x39ex=3(9x29ex)3x39ex=\dfrac{3(3x^3-9e^x)'}{3x^3-9e^x}=\dfrac{3(9x^2-9e^x)}{3x^3-9e^x}

=9(x2ex)x33ex=\dfrac{9(x^2-e^x)}{x^3-3e^x}

(c)


((x2+3)x)=2xx+x2+32x((x^2+3)\sqrt{x})'=2x\sqrt{x}+\dfrac{x^2+3}{2\sqrt{x}}

=4x2+x2+32x=5x2+32x=\dfrac{4x^2+x^2+3}{2\sqrt{x}}=\dfrac{5x^2+3}{2\sqrt{x}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS